Spaces:
Sleeping
Sleeping
def house_price_prediction(ft1,ft2,ft3,ft4,ft5,ft6,ft7,ft8): | |
# output=1 | |
import pandas as pd | |
housing=pd.read_csv("housing.csv") | |
## 1. split data to get train and test set | |
from sklearn.model_selection import train_test_split | |
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10) | |
## 2. clean the missing values | |
train_set_clean = train_set.dropna(subset=["total_bedrooms"]) | |
train_set_clean | |
## 2. derive training features and training labels | |
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y | |
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set | |
## 4. scale the numeric features in training set | |
from sklearn.preprocessing import MinMaxScaler | |
scaler = MinMaxScaler() ## define the transformer | |
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset | |
train_features_normalized = scaler.transform(train_features) | |
train_features_normalized | |
#model training | |
from sklearn.linear_model import LinearRegression ## import the LinearRegression Function | |
lin_reg = LinearRegression() ## Initialize the class | |
lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning | |
#model prediction | |
import numpy as np | |
test_features=np.array([[ft1,ft2,ft3,ft4,ft5,ft6,ft7,ft8]]) | |
training_predictions = lin_reg.predict(test_features) | |
return training_predictions | |
#return output | |
import gradio as gr | |
ip1 = gr.inputs.Slider(-124.35, -114.35, step=5, label = "Longitude") | |
ip2 = gr.inputs.Slider(32,41, step=5, label = "Latitude") | |
ip3 = gr.inputs.Slider(1,52, step=5, label = "Housing_median_age (Year)") | |
ip4 = gr.inputs.Slider(1,39996, step=5, label = "Total_rooms") | |
ip5 = gr.inputs.Slider(1,6441, step=5, label = "Total_bedrooms") | |
ip6 = gr.inputs.Slider(3,35678, step=5, label = "Population") | |
ip7 = gr.inputs.Slider(1,6081, step=5, label = "Households") | |
ip8 = gr.inputs.Slider(0,15, step=5, label = "Median_income") | |
op_module = gr.outputs.Textbox(label = "Output") | |
gr.Interface(fn=house_price_prediction, | |
inputs=[ip1, ip2, ip3, | |
ip4, ip5, ip6, | |
ip7,ip8], | |
outputs=[op_module] | |
).launch(debug= True) | |
op_module = gr.outputs.Textbox(label = "Output") |