Prakyath01's picture
Update app.py
4419533 verified
raw
history blame
4.79 kB
import os
import json
import requests
import gradio as gr
from bs4 import BeautifulSoup
from textwrap import shorten
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
# ------------------ SCRAPE KUBERNETES DOCS ------------------ #
URLS = {
"pods": "https://kubernetes.io/docs/concepts/workloads/pods/",
"deployments": "https://kubernetes.io/docs/concepts/workloads/controllers/deployment/",
"services": "https://kubernetes.io/docs/concepts/services-networking/service/",
"namespaces": "https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/",
"nodes": "https://kubernetes.io/docs/concepts/architecture/nodes/",
"statefulsets": "https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/",
"rbac": "https://kubernetes.io/docs/reference/access-authn-authz/rbac/",
"persistent-volumes": "https://kubernetes.io/docs/concepts/storage/persistent-volumes/",
"ingress": "https://kubernetes.io/docs/concepts/services-networking/ingress/",
"autoscaling": "https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/",
}
def scrape_page(name, url):
try:
r = requests.get(url, timeout=20)
soup = BeautifulSoup(r.text, "html.parser")
content = soup.find("div", class_="td-content")
if not content:
return None
text = content.get_text(separator="\n").strip()
return Document(
page_content=text,
metadata={"doc_id": name, "url": url}
)
except:
return None
docs = []
for name, url in URLS.items():
d = scrape_page(name, url)
if d:
docs.append(d)
# ------------------ CHUNK + EMBEDDINGS + VECTOR DB ------------------ #
splitter = RecursiveCharacterTextSplitter(chunk_size=900, chunk_overlap=200)
chunks = splitter.split_documents(docs)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = Chroma.from_documents(chunks, embedding_model)
retriever = vectordb.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": 5, "score_threshold": 0.4}
)
# ------------------ LLM CALL (OPENROUTER) ------------------ #
def call_llm(prompt):
url = "https://openrouter.ai/api/v1/chat/completions"
headers = {
"Authorization": f"Bearer {os.getenv('OPENROUTER_API_KEY')}",
"HTTP-Referer": "https://huggingface.co/",
"X-Title": "Kubernetes RAG Assistant"
}
data = {
"model": "meta-llama/llama-3.1-8b-instruct",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 400,
"temperature": 0.0,
}
r = requests.post(url, headers=headers, json=data)
res = r.json()
if "choices" in res:
return res["choices"][0]["message"]["content"]
print("🚨 LLM ERROR:", res)
return "⚠️ Error: No response from model"
# ------------------ BUILD ANSWER WITH CITATIONS ------------------ #
def build_context_with_citations(query):
docs = retriever.invoke(query)
context = ""
sources = []
for i, d in enumerate(docs, start=1):
label = f"[{i}]"
context += f"{label} {d.page_content[:900]}\nSource: {d.metadata['url']}\n\n"
sources.append(f"{label} β†’ {d.metadata['url']}")
return context, sources
def answer_question(query, history):
context, sources = build_context_with_citations(query)
prompt = f"""
Answer the question strictly using the context below.
Every sentence must include citation like [1], [2].
If missing info β†’ reply: "Not in docs."
Question: {query}
Context:
{context}
"""
answer = call_llm(prompt)
src = "\n".join(sources) if sources else "No sources available."
history.append((query, answer + "\n\n---\nSources:\n" + src))
return history, ""
# ------------------ GRADIO UI ------------------ #
custom_css = """
.source-box {
background: #1e293b;
padding: 10px;
border-radius: 8px;
color: #dbeafe;
border: 1px solid #3b82f6;
}
"""
with gr.Blocks(theme="soft") as app:
gr.HTML(f"<style>{custom_css}</style>")
gr.HTML("<h1 style='text-align:center;color:#3b82f6'>☸ Kubernetes RAG Assistant</h1>"
"<p style='text-align:center;color:#cbd5e1'>Ask Kubernetes questions β€” answers include official docs citations πŸ“Œ</p>")
chat = gr.Chatbot(label="Conversation", height=450)
msg = gr.Textbox(label="Ask a question...", placeholder="What is a pod?")
clear = gr.Button("Clear Chat")
msg.submit(answer_question, [msg, chat], [chat, msg])
clear.click(lambda: ([], ""), None, [chat, msg])
app.launch()