Prakyath01's picture
Update app.py
4d068e8 verified
raw
history blame
4.95 kB
import os
import requests
import json
from bs4 import BeautifulSoup
from textwrap import shorten
import gradio as gr
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
# -----------------------
# 1. SCRAPE K8S DOCS
# -----------------------
urls = {
"pods": "https://kubernetes.io/docs/concepts/workloads/pods/",
"deployments": "https://kubernetes.io/docs/concepts/workloads/controllers/deployment/",
"services": "https://kubernetes.io/docs/concepts/services-networking/service/",
"namespaces": "https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/",
"nodes": "https://kubernetes.io/docs/concepts/architecture/nodes/",
"statefulsets": "https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/",
"rbac": "https://kubernetes.io/docs/reference/access-authn-authz/rbac/",
"persistent-volumes": "https://kubernetes.io/docs/concepts/storage/persistent-volumes/",
"ingress": "https://kubernetes.io/docs/concepts/services-networking/ingress/",
"autoscaling": "https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/"
}
def scrape_docs():
docs = []
for name, url in urls.items():
try:
r = requests.get(url, timeout=20)
soup = BeautifulSoup(r.text, "html.parser")
content = soup.find("div", class_="td-content")
if not content:
continue
text = content.get_text(separator="\n").strip()
docs.append(Document(page_content=text, metadata={"doc_id": name, "url": url}))
except Exception:
continue
return docs
docs = scrape_docs()
# -----------------------
# 2. CHUNK + EMBED + VECTOR DB
# -----------------------
splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100)
chunks = splitter.split_documents(docs)
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = Chroma.from_documents(chunks, embedding)
retriever = vectordb.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": 5, "score_threshold": 0.4}
)
# -----------------------
# 3. RAG HELPERS
# -----------------------
def build_context_with_citations(query: str):
retrieved_docs = retriever.invoke(query)
context = ""
mapping = []
for i, d in enumerate(retrieved_docs, start=1):
label = f"[{i}]"
context += f"{label} {d.page_content[:1000]}\n\nSource: {d.metadata['url']}\n\n"
mapping.append({
"label": label,
"url": d.metadata["url"],
"doc": d.metadata["doc_id"],
"preview": shorten(d.page_content, width=200)
})
return context, mapping
def build_prompt(query, context):
return f"""
You are a Kubernetes expert.
Use ONLY the context below.
Add citations like [1][2] after each fact.
If not found, say: 'Not in docs'.
QUESTION:
{query}
CONTEXT:
{context}
""".strip()
# -----------------------
# 4. OPENROUTER LLM
# -----------------------
import requests as req
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
def call_llm(prompt: str) -> str:
if not OPENROUTER_API_KEY:
return "OpenRouter API key is not set. Please configure OPENROUTER_API_KEY in the Space settings."
url = "https://openrouter.ai/api/v1/chat/completions"
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "meta-llama/llama-3.1-8b-instruct",
"messages": [
{"role": "system", "content": "You are a Kubernetes expert. Only use provided context."},
{"role": "user", "content": prompt}
],
"temperature": 0.0
}
response = req.post(url, headers=headers, data=json.dumps(data))
out = response.json()
return out.get("choices", [{"message": {"content": "No response"}}])[0]["message"]["content"]
def answer_question(query: str):
context, sources = build_context_with_citations(query)
prompt = build_prompt(query, context)
answer = call_llm(prompt)
return answer, sources
# -----------------------
# 5. GRADIO CHAT APP
# -----------------------
def chat_fn(message, history):
answer, sources = answer_question(message)
src_lines = [f"{s['label']}{s['url']}" for s in sources]
sources_text = "\n".join(src_lines) if src_lines else "No sources found."
full_answer = f"{answer}\n\n---\nSources:\n{sources_text}"
return full_answer
demo = gr.ChatInterface(
fn=chat_fn,
title="Kubernetes RAG Assistant",
description="Ask Kubernetes questions. Answers are grounded in official docs and include citations."
)
def main():
return demo
if __name__ == "__main__":
demo.launch()