gpt_detect23 / app.py
Prakhar618's picture
Update app.py
f897ab0 verified
raw
history blame
1.21 kB
import gradio as gr
from transformers import pipeline
from datasets import Dataset, DatasetDict
import pandas as pd
import numpy as np
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
def predict(text):
# Convert test dataframe to Hugging Face dataset
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
# Apply the tokenization function to the train dataset
train_dataset1 = test_dataset.map(tokenize_function, batched=True,)
predictions, label_probs, _ = trainer.predict(train_dataset1)
y_pred = np.argmax(predictions, axis=1)
return y_pred
def tokenize_function(examples):
return tokenizer(examples['text'], padding=True, truncation=True,
max_length=256)
test_args = TrainingArguments(
do_train=False,
do_predict=True,
per_device_eval_batch_size = 2
)
trainer = Trainer(
model=model,
args=test_args,
)
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
iface.launch()