Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,9 @@ import tensorflow as tf
|
|
12 |
|
13 |
hf_key = text_input = st.text_input("Access token")
|
14 |
|
|
|
|
|
|
|
15 |
class CNN(nn.Module):
|
16 |
@nn.compact
|
17 |
def __call__(self, x):
|
@@ -42,13 +45,14 @@ if len(uploaded_files) == 0:
|
|
42 |
st.write("Please upload an image!")
|
43 |
else:
|
44 |
input = jnp.array([tf.cast(tf.image.resize(tf.convert_to_tensor(Image.open(uploaded_file)), [50, 50]), tf.float32) / 255. for uploaded_file in uploaded_files])
|
45 |
-
|
46 |
-
pred = cnn.apply({"params": params}, input)
|
47 |
-
st.write("Model Prediction: " + str(pred))
|
48 |
-
st.write("Model Prediction type: " + str(type(pred)))
|
49 |
-
st.write("Model Prediction type dir: " + str(dir(pred)))
|
50 |
for (index, image) in enumerate(uploaded_files):
|
51 |
st.image(Image.open(image))
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
|
54 |
scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
|
@@ -60,4 +64,4 @@ with st.expander("See first convolutional layer"):
|
|
60 |
|
61 |
with st.expander("See second convolutional layer"):
|
62 |
print(params["Conv_1"]["kernel"].shape)
|
63 |
-
gridify(params["Conv_1"]["kernel"], grid=(64
|
|
|
12 |
|
13 |
hf_key = text_input = st.text_input("Access token")
|
14 |
|
15 |
+
def sigmoid(x):
|
16 |
+
return 1/(1+e**-x)
|
17 |
+
|
18 |
class CNN(nn.Module):
|
19 |
@nn.compact
|
20 |
def __call__(self, x):
|
|
|
45 |
st.write("Please upload an image!")
|
46 |
else:
|
47 |
input = jnp.array([tf.cast(tf.image.resize(tf.convert_to_tensor(Image.open(uploaded_file)), [50, 50]), tf.float32) / 255. for uploaded_file in uploaded_files])
|
48 |
+
prediction = cnn.apply({"params": params}, input)
|
|
|
|
|
|
|
|
|
49 |
for (index, image) in enumerate(uploaded_files):
|
50 |
st.image(Image.open(image))
|
51 |
+
[cat_prob, dog_prob] = jax.nn.softmax(prediction[index])
|
52 |
+
if cat_prob > dog_prob:
|
53 |
+
st.write(f"Model Prediction - Cat ({100*cat_prob}%), Dog ({100*dog_prob}%)")
|
54 |
+
else:
|
55 |
+
st.write(f"Model Prediction - Dog ({100*dog_prob}%), Cat ({100*cat_prob}%)")
|
56 |
|
57 |
def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
|
58 |
scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
|
|
|
64 |
|
65 |
with st.expander("See second convolutional layer"):
|
66 |
print(params["Conv_1"]["kernel"].shape)
|
67 |
+
gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))
|