Spaces:
Running
Running
from langchain.chat_models import init_chat_model | |
from dotenv import load_dotenv | |
import os | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_qdrant import QdrantVectorStore | |
load_dotenv() | |
def chat_model(): | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
llm = init_chat_model("mistral-saba-24b", model_provider="groq",api_key=groq_api_key) | |
return llm | |
def small_chat_model(): | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
llm = init_chat_model("llama-3.3-70b-versatile", model_provider="groq",api_key=groq_api_key) | |
return llm | |
def init_vector_store(): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
doc_store = QdrantVectorStore.from_existing_collection( | |
embedding=embeddings, | |
collection_name="multidoc-rag-agent", | |
url=os.getenv('QDRANT_URL'), | |
api_key=os.getenv('QDRANT_API_KEY')) | |
return doc_store | |
def retrieve_docs(query, doc_store): | |
retriever = doc_store.as_retriever(search_type="similarity", search_kwargs={"k": 3,}) | |
response=retriever.invoke(query) | |
return response | |