Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pipeline import detectPipeline
|
3 |
+
|
4 |
+
|
5 |
+
st.title('Sign Language Letters detection')
|
6 |
+
st.write('Detects Sign language Alphabets in an image \nPowered by YOLOv8 Nano model')
|
7 |
+
|
8 |
+
st.write('')
|
9 |
+
|
10 |
+
detect_pipeline = detectPipeline()
|
11 |
+
|
12 |
+
st.info('Sign Language Letters detection model loaded successfully!')
|
13 |
+
|
14 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
15 |
+
|
16 |
+
if uploaded_file is not None:
|
17 |
+
|
18 |
+
with st.container():
|
19 |
+
col1, col2 = st.columns([3, 3])
|
20 |
+
|
21 |
+
col1.header('Input Image')
|
22 |
+
col1.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
23 |
+
|
24 |
+
col1.text('')
|
25 |
+
col1.text('')
|
26 |
+
|
27 |
+
if st.button('Detect'):
|
28 |
+
detections = detect_pipeline.detect_signs(img_path=uploaded_file)
|
29 |
+
detections_img = detect_pipeline.drawDetections2Image(img_path=uploaded_file, detections=detections)
|
30 |
+
|
31 |
+
col2.header('Detections')
|
32 |
+
col2.image(detections_img, caption='Predictions by model', use_column_width=True)
|
33 |
+
|