|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
os.system('python setup.py develop') |
|
os.system('pip install realesrgan') |
|
|
|
import cv2 |
|
import shutil |
|
import tempfile |
|
import torch |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
|
|
from gfpgan import GFPGANer |
|
|
|
try: |
|
from cog import BasePredictor, Input, Path |
|
from realesrgan.utils import RealESRGANer |
|
except Exception: |
|
print('please install cog and realesrgan package') |
|
|
|
|
|
class Predictor(BasePredictor): |
|
|
|
def setup(self): |
|
os.makedirs('output', exist_ok=True) |
|
|
|
if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'): |
|
os.system( |
|
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights' |
|
) |
|
if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'): |
|
os.system( |
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights') |
|
if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'): |
|
os.system( |
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights') |
|
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'): |
|
os.system( |
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights') |
|
if not os.path.exists('gfpgan/weights/RestoreFormer.pth'): |
|
os.system( |
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P ./gfpgan/weights' |
|
) |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
model_path = 'gfpgan/weights/realesr-general-x4v3.pth' |
|
half = True if torch.cuda.is_available() else False |
|
self.upsampler = RealESRGANer( |
|
scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
|
|
self.face_enhancer = GFPGANer( |
|
model_path='gfpgan/weights/GFPGANv1.4.pth', |
|
upscale=2, |
|
arch='clean', |
|
channel_multiplier=2, |
|
bg_upsampler=self.upsampler) |
|
self.current_version = 'v1.4' |
|
|
|
def predict( |
|
self, |
|
img: Path = Input(description='Input'), |
|
version: str = Input( |
|
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.', |
|
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], |
|
default='v1.4'), |
|
scale: float = Input(description='Rescaling factor', default=2), |
|
) -> Path: |
|
weight = 0.5 |
|
print(img, version, scale, weight) |
|
try: |
|
extension = os.path.splitext(os.path.basename(str(img)))[1] |
|
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
if self.current_version != version: |
|
if version == 'v1.2': |
|
self.face_enhancer = GFPGANer( |
|
model_path='gfpgan/weights/GFPGANv1.2.pth', |
|
upscale=2, |
|
arch='clean', |
|
channel_multiplier=2, |
|
bg_upsampler=self.upsampler) |
|
self.current_version = 'v1.2' |
|
elif version == 'v1.3': |
|
self.face_enhancer = GFPGANer( |
|
model_path='gfpgan/weights/GFPGANv1.3.pth', |
|
upscale=2, |
|
arch='clean', |
|
channel_multiplier=2, |
|
bg_upsampler=self.upsampler) |
|
self.current_version = 'v1.3' |
|
elif version == 'v1.4': |
|
self.face_enhancer = GFPGANer( |
|
model_path='gfpgan/weights/GFPGANv1.4.pth', |
|
upscale=2, |
|
arch='clean', |
|
channel_multiplier=2, |
|
bg_upsampler=self.upsampler) |
|
self.current_version = 'v1.4' |
|
elif version == 'RestoreFormer': |
|
self.face_enhancer = GFPGANer( |
|
model_path='gfpgan/weights/RestoreFormer.pth', |
|
upscale=2, |
|
arch='RestoreFormer', |
|
channel_multiplier=2, |
|
bg_upsampler=self.upsampler) |
|
|
|
try: |
|
_, _, output = self.face_enhancer.enhance( |
|
img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
|
|
try: |
|
if scale != 2: |
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 |
|
h, w = img.shape[0:2] |
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) |
|
except Exception as error: |
|
print('wrong scale input.', error) |
|
|
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
|
|
|
|
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}' |
|
cv2.imwrite(str(out_path), output) |
|
except Exception as error: |
|
print('global exception: ', error) |
|
finally: |
|
clean_folder('output') |
|
return out_path |
|
|
|
|
|
def clean_folder(folder): |
|
for filename in os.listdir(folder): |
|
file_path = os.path.join(folder, filename) |
|
try: |
|
if os.path.isfile(file_path) or os.path.islink(file_path): |
|
os.unlink(file_path) |
|
elif os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
except Exception as e: |
|
print(f'Failed to delete {file_path}. Reason: {e}') |
|
|