|
import cv2 |
|
import os |
|
import torch |
|
from basicsr.utils import img2tensor, tensor2img |
|
from basicsr.utils.download_util import load_file_from_url |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from torchvision.transforms.functional import normalize |
|
|
|
from gfpgan.archs.gfpgan_bilinear_arch import GFPGANBilinear |
|
from gfpgan.archs.gfpganv1_arch import GFPGANv1 |
|
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean |
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
|
|
class GFPGANer(): |
|
"""Helper for restoration with GFPGAN. |
|
|
|
It will detect and crop faces, and then resize the faces to 512x512. |
|
GFPGAN is used to restored the resized faces. |
|
The background is upsampled with the bg_upsampler. |
|
Finally, the faces will be pasted back to the upsample background image. |
|
|
|
Args: |
|
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically). |
|
upscale (float): The upscale of the final output. Default: 2. |
|
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean. |
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. |
|
bg_upsampler (nn.Module): The upsampler for the background. Default: None. |
|
""" |
|
|
|
def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None, device=None): |
|
self.upscale = upscale |
|
self.bg_upsampler = bg_upsampler |
|
|
|
|
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device |
|
|
|
if arch == 'clean': |
|
self.gfpgan = GFPGANv1Clean( |
|
out_size=512, |
|
num_style_feat=512, |
|
channel_multiplier=channel_multiplier, |
|
decoder_load_path=None, |
|
fix_decoder=False, |
|
num_mlp=8, |
|
input_is_latent=True, |
|
different_w=True, |
|
narrow=1, |
|
sft_half=True) |
|
elif arch == 'bilinear': |
|
self.gfpgan = GFPGANBilinear( |
|
out_size=512, |
|
num_style_feat=512, |
|
channel_multiplier=channel_multiplier, |
|
decoder_load_path=None, |
|
fix_decoder=False, |
|
num_mlp=8, |
|
input_is_latent=True, |
|
different_w=True, |
|
narrow=1, |
|
sft_half=True) |
|
elif arch == 'original': |
|
self.gfpgan = GFPGANv1( |
|
out_size=512, |
|
num_style_feat=512, |
|
channel_multiplier=channel_multiplier, |
|
decoder_load_path=None, |
|
fix_decoder=True, |
|
num_mlp=8, |
|
input_is_latent=True, |
|
different_w=True, |
|
narrow=1, |
|
sft_half=True) |
|
elif arch == 'RestoreFormer': |
|
from gfpgan.archs.restoreformer_arch import RestoreFormer |
|
self.gfpgan = RestoreFormer() |
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=self.device, |
|
model_rootpath='gfpgan/weights') |
|
|
|
if model_path.startswith('https://'): |
|
model_path = load_file_from_url( |
|
url=model_path, model_dir=os.path.join(ROOT_DIR, 'gfpgan/weights'), progress=True, file_name=None) |
|
loadnet = torch.load(model_path) |
|
if 'params_ema' in loadnet: |
|
keyname = 'params_ema' |
|
else: |
|
keyname = 'params' |
|
self.gfpgan.load_state_dict(loadnet[keyname], strict=True) |
|
self.gfpgan.eval() |
|
self.gfpgan = self.gfpgan.to(self.device) |
|
|
|
@torch.no_grad() |
|
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True, weight=0.5): |
|
self.face_helper.clean_all() |
|
|
|
if has_aligned: |
|
img = cv2.resize(img, (512, 512)) |
|
self.face_helper.cropped_faces = [img] |
|
else: |
|
self.face_helper.read_image(img) |
|
|
|
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) |
|
|
|
|
|
|
|
self.face_helper.align_warp_face() |
|
|
|
|
|
for cropped_face in self.face_helper.cropped_faces: |
|
|
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) |
|
|
|
try: |
|
output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0] |
|
|
|
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)) |
|
except RuntimeError as error: |
|
print(f'\tFailed inference for GFPGAN: {error}.') |
|
restored_face = cropped_face |
|
|
|
restored_face = restored_face.astype('uint8') |
|
self.face_helper.add_restored_face(restored_face) |
|
|
|
if not has_aligned and paste_back: |
|
|
|
if self.bg_upsampler is not None: |
|
|
|
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0] |
|
else: |
|
bg_img = None |
|
|
|
self.face_helper.get_inverse_affine(None) |
|
|
|
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img) |
|
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img |
|
else: |
|
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None |
|
|