|
import cv2 |
|
import json |
|
import numpy as np |
|
import os |
|
import torch |
|
from basicsr.utils import FileClient, imfrombytes |
|
from collections import OrderedDict |
|
|
|
|
|
|
|
save_img = False |
|
scale = 0.5 |
|
enlarge_ratio = 1.4 |
|
json_path = 'ffhq-dataset-v2.json' |
|
face_path = 'datasets/ffhq/ffhq_512.lmdb' |
|
save_path = './FFHQ_eye_mouth_landmarks_512.pth' |
|
|
|
print('Load JSON metadata...') |
|
|
|
with open(json_path, 'rb') as f: |
|
json_data = json.load(f, object_pairs_hook=OrderedDict) |
|
|
|
print('Open LMDB file...') |
|
|
|
file_client = FileClient('lmdb', db_paths=face_path) |
|
with open(os.path.join(face_path, 'meta_info.txt')) as fin: |
|
paths = [line.split('.')[0] for line in fin] |
|
|
|
save_dict = {} |
|
|
|
for item_idx, item in enumerate(json_data.values()): |
|
print(f'\r{item_idx} / {len(json_data)}, {item["image"]["file_path"]} ', end='', flush=True) |
|
|
|
|
|
lm = np.array(item['image']['face_landmarks']) |
|
lm = lm * scale |
|
|
|
item_dict = {} |
|
|
|
if save_img: |
|
img_bytes = file_client.get(paths[item_idx]) |
|
img = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
map_left_eye = list(range(36, 42)) |
|
map_right_eye = list(range(42, 48)) |
|
map_mouth = list(range(48, 68)) |
|
|
|
|
|
mean_left_eye = np.mean(lm[map_left_eye], 0) |
|
half_len_left_eye = np.max((np.max(np.max(lm[map_left_eye], 0) - np.min(lm[map_left_eye], 0)) / 2, 16)) |
|
item_dict['left_eye'] = [mean_left_eye[0], mean_left_eye[1], half_len_left_eye] |
|
|
|
half_len_left_eye *= enlarge_ratio |
|
loc_left_eye = np.hstack((mean_left_eye - half_len_left_eye + 1, mean_left_eye + half_len_left_eye)).astype(int) |
|
if save_img: |
|
eye_left_img = img[loc_left_eye[1]:loc_left_eye[3], loc_left_eye[0]:loc_left_eye[2], :] |
|
cv2.imwrite(f'tmp/{item_idx:08d}_eye_left.png', eye_left_img * 255) |
|
|
|
|
|
mean_right_eye = np.mean(lm[map_right_eye], 0) |
|
half_len_right_eye = np.max((np.max(np.max(lm[map_right_eye], 0) - np.min(lm[map_right_eye], 0)) / 2, 16)) |
|
item_dict['right_eye'] = [mean_right_eye[0], mean_right_eye[1], half_len_right_eye] |
|
|
|
half_len_right_eye *= enlarge_ratio |
|
loc_right_eye = np.hstack( |
|
(mean_right_eye - half_len_right_eye + 1, mean_right_eye + half_len_right_eye)).astype(int) |
|
if save_img: |
|
eye_right_img = img[loc_right_eye[1]:loc_right_eye[3], loc_right_eye[0]:loc_right_eye[2], :] |
|
cv2.imwrite(f'tmp/{item_idx:08d}_eye_right.png', eye_right_img * 255) |
|
|
|
|
|
mean_mouth = np.mean(lm[map_mouth], 0) |
|
half_len_mouth = np.max((np.max(np.max(lm[map_mouth], 0) - np.min(lm[map_mouth], 0)) / 2, 16)) |
|
item_dict['mouth'] = [mean_mouth[0], mean_mouth[1], half_len_mouth] |
|
|
|
loc_mouth = np.hstack((mean_mouth - half_len_mouth + 1, mean_mouth + half_len_mouth)).astype(int) |
|
if save_img: |
|
mouth_img = img[loc_mouth[1]:loc_mouth[3], loc_mouth[0]:loc_mouth[2], :] |
|
cv2.imwrite(f'tmp/{item_idx:08d}_mouth.png', mouth_img * 255) |
|
|
|
save_dict[f'{item_idx:08d}'] = item_dict |
|
|
|
print('Save...') |
|
torch.save(save_dict, save_path) |
|
|