Spaces:
Running
Running
import gradio as gr | |
import ctranslate2 | |
from transformers import AutoTokenizer | |
from huggingface_hub import snapshot_download | |
from codeexecutor import postprocess_completion,get_majority_vote | |
# Define the model and tokenizer loading | |
model_prompt = "Solve the following mathematical problem: " | |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") | |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") | |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") | |
iterations=10 | |
# Function to generate predictions using the model | |
def get_prediction(question): | |
input_text = model_prompt + question | |
input_tokens = tokenizer.tokenize(input_text) | |
results = generator.generate_batch([input_tokens]) | |
output_tokens = results[0].sequences[0] | |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) | |
return predicted_answer | |
# Function to perform majority voting across multiple predictions | |
def majority_vote(question, num_iterations=10): | |
all_predictions = [] | |
all_answer=[] | |
for _ in range(num_iterations): | |
prediction = get_prediction(question) | |
answer=postprocess_completion(predicted_answer,True,True) | |
all_predictions.append(prediction) | |
all_answer.append(answer) | |
majority_voted_pred = max(set(all_predictions), key=all_predictions.count) | |
majority_voted_ans=get_majority_vote(all_answer) | |
return majority_voted_pred, all_predictions,majority_voted_ans | |
# Gradio interface for user input and output | |
def gradio_interface(question, correct_answer): | |
final_prediction, all_predictions,final_answer = majority_vote(question, iterations) | |
return { | |
"Question": question, | |
"Generated Answers (10 iterations)": all_predictions, | |
"Majority-Voted Prediction": final_prediction, | |
"Correct solution": correct_answer, | |
"Majority answer": final_answer | |
} | |
# Gradio app setup | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(label="Math Question"), | |
gr.Textbox(label="Correct Answer"), | |
], | |
outputs=[ | |
gr.JSON(label="Results"), # Display the results in a JSON format | |
], | |
title="Math Question Solver", | |
description="Enter a math question to get the model prediction and see all generated answers.", | |
) | |
if __name__ == "__main__": | |
interface.launch() | |