gourav3017's picture
Update app.py
375bef0
import streamlit as st
import pandas as pd
import json
import os
import posixpath
from huggingface_hub import hf_hub_download
from huggingface_hub import list_repo_files
# Replace this with your actual Hugging Face repo ID
REPO_ID = "PortPy-Project/PortPy_Dataset"
# Load from private repo using token
token = os.getenv("HF_TOKEN")
@st.cache_data
def get_patient_ids():
# Extract disease site from patient ID prefix (e.g., Lung_Patient_1)
file = hf_hub_download(REPO_ID, repo_type="dataset", filename="data_info.jsonl", local_dir="./temp", use_auth_token=token)
with open(file) as f:
# data_info = json.load(f)
data_info = [json.loads(line) for line in f]
patient_ids = [pat['patient_id'] for pat in data_info]
df = pd.DataFrame(patient_ids, columns=["patient_id"])
df["disease_site"] = df["patient_id"].str.extract(r"^(.*?)_")
return df
@st.cache_data
def load_all_metadata(disease_site):
# Get the list of patient IDs for the selected disease site
patient_df = get_patient_ids()
filtered_patients = patient_df[patient_df["disease_site"] == disease_site]
metadata = {}
for patient_id in filtered_patients["patient_id"]:
# Load structure metadata for the patient
structs = load_structure_metadata(patient_id)
# Load beam metadata for the patient
beams = load_beam_metadata(patient_id)
planner_file = hf_hub_download(REPO_ID, repo_type="dataset", filename=f"data/{patient_id}/PlannerBeams.json", local_dir="./temp", use_auth_token=token)
with open(planner_file) as f:
planner_data = json.load(f)
planner_beam_ids = planner_data.get("IDs", [])
metadata[patient_id] = {
"structures": structs,
"beams": beams,
"planner_beam_ids": planner_beam_ids
}
return metadata
@st.cache_data
def load_structure_metadata(patient_id):
file = hf_hub_download(REPO_ID, repo_type="dataset", filename=f"data/{patient_id}/StructureSet_MetaData.json", local_dir="./temp", use_auth_token=token)
with open(file) as f:
return json.load(f)
@st.cache_data
def load_beam_metadata(patient_id):
beam_meta_paths = []
files = list_repo_files(repo_id=REPO_ID, repo_type="dataset")
beam_meta_paths = [
f for f in files
if f.startswith(f"data/{patient_id}/Beams/Beam_") and f.endswith("_MetaData.json")
]
# for bid in beam_ids:
# beam_meta_paths.append(f"data/{patient_id}/Beams/Beam_{bid}_MetaData.json")
beam_meta = []
for path in beam_meta_paths:
file = hf_hub_download(REPO_ID, repo_type="dataset", filename=path, local_dir="./temp", use_auth_token=token)
with open(file) as f:
beam_meta.append(json.load(f))
return beam_meta
def get_patient_summary_from_cached_data(patient_id, all_metadata):
structs = all_metadata[patient_id]["structures"]
beams = all_metadata[patient_id]["beams"]
ptv_vol = None
for s in structs:
if "PTV" in s["name"].upper():
ptv_vol = s.get("volume_cc")
break
return {
"ptv_volume": ptv_vol,
"num_beams": len(beams),
"beams": beams
}
def filter_matched_data(filtered_patients, query_ptv_vol, beam_gantry_filter,
beam_collimator_filter, beam_energy_filter, beam_couch_filter,
only_planner, all_metadata):
matched = []
gantry_angles = set(map(int, beam_gantry_filter.split(","))) if beam_gantry_filter else None
collimator_angles = set(map(int, beam_collimator_filter.split(","))) if beam_collimator_filter else None
couch_angles = set(map(int, beam_couch_filter.split(","))) if beam_couch_filter else None
energies = set(beam_energy_filter.replace(" ", "").split(",")) if beam_energy_filter else None
for pid in filtered_patients["patient_id"]:
# Retrieve metadata for the patient from the pre-cached all_metadata
summary = get_patient_summary_from_cached_data(pid, all_metadata)
if summary["ptv_volume"] is None or summary["ptv_volume"] < query_ptv_vol:
continue
# Filter beams by all conditions
selected_beams = summary["beams"]
if gantry_angles:
selected_beams = [b for b in selected_beams if b["gantry_angle"] in gantry_angles]
if collimator_angles:
selected_beams = [b for b in selected_beams if b["collimator_angle"] in collimator_angles]
if couch_angles:
selected_beams = [b for b in selected_beams if b["couch_angle"] in couch_angles]
if energies:
selected_beams = [b for b in selected_beams if b['energy_MV'] in energies]
selected_beam_ids = [b["ID"] for b in selected_beams]
if not selected_beam_ids:
continue
if only_planner:
planner_beam_ids = set(all_metadata[pid]["planner_beam_ids"])
selected_beam_ids = list(planner_beam_ids.intersection(selected_beam_ids))
if not selected_beam_ids:
continue
matched.append({
"patient_id": pid,
"num_beams": len(selected_beam_ids),
"ptv_volume": summary["ptv_volume"],
"selected_beam_ids": selected_beam_ids
})
return pd.DataFrame(matched)
def download_data(repo_id, patient_ids, beam_ids=None, planner_beam_ids=True, max_retries=2, local_dir='./'):
from huggingface_hub import hf_hub_download
downloaded_files = []
for patient_id in patient_ids:
static_files = [
"CT_Data.h5", "CT_MetaData.json",
"StructureSet_Data.h5", "StructureSet_MetaData.json",
"OptimizationVoxels_Data.h5", "OptimizationVoxels_MetaData.json",
"PlannerBeams.json",
"rt_dose_echo_imrt.dcm", "rt_plan_echo_imrt.dcm"
]
for filename in static_files:
hf_path = posixpath.join("data", patient_id, filename)
for attempt in range(max_retries):
try:
local_path = hf_hub_download(
repo_id=repo_id,
repo_type="dataset",
filename=hf_path,
local_dir=local_dir,
use_auth_token=token
)
downloaded_files.append(local_path)
break
except Exception as e:
if attempt == max_retries - 1:
st.error(f"Failed to download {hf_path}: {e}")
if planner_beam_ids:
planner_file = os.path.join(local_dir, 'data', patient_id, "PlannerBeams.json")
try:
with open(planner_file, "r") as f:
planner_data = json.load(f)
beam_ids = planner_data.get("IDs", [])
except Exception as e:
st.error(f"Error reading PlannerBeams.json: {e}")
beam_ids = []
if beam_ids is not None:
for bid in beam_ids:
beam_data_file = f"Beams/Beam_{bid}_Data.h5"
beam_meta_file = f"Beams/Beam_{bid}_MetaData.json"
for beam_file in [beam_data_file, beam_meta_file]:
hf_path = posixpath.join("data", patient_id, beam_file)
for attempt in range(max_retries):
try:
local_path = hf_hub_download(
repo_id=repo_id,
repo_type="dataset",
filename=hf_path,
local_dir=local_dir,
use_auth_token=token
)
downloaded_files.append(local_path)
break
except Exception as e:
if attempt == max_retries - 1:
st.error(f"Failed to download {hf_path}: {e}")
return downloaded_files
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
def show_aggrid_table(df):
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_default_column(groupable=True, value=True, enableRowGroup=True, aggFunc='sum', editable=False)
gb.configure_grid_options(domLayout='normal')
# Enable multiple row selection with checkboxes
gb.configure_selection('multiple', use_checkbox=True)
gb.configure_column("patient_id", checkboxSelection=True)
grid_options = gb.build()
grid_response = AgGrid(
df,
gridOptions=grid_options,
enable_enterprise_modules=False,
allow_unsafe_jscode=True,
fit_columns_on_grid_load=True,
theme='balham',
update_mode=GridUpdateMode.SELECTION_CHANGED
)
return grid_response
def main():
st.set_page_config(page_title="PortPy Metadata Explorer", layout="wide")
st.title("📊 PortPy Metadata Explorer & Downloader")
patient_df = get_patient_ids()
disease_site = st.sidebar.selectbox("Select Disease Site", patient_df["disease_site"].unique())
all_metadata = load_all_metadata(disease_site) # Load and cache all metadata for selected disease site
filtered_patients = pd.DataFrame(all_metadata.keys(), columns=["patient_id"])
beam_gantry_filter = st.sidebar.text_input("Gantry Angles (comma-separated)", "")
beam_collimator_filter = st.sidebar.text_input("Collimator Angles (comma-separated)", "")
beam_energy_filter = st.sidebar.text_input("Beam Energies (comma-separated)", "")
beam_couch_filter = st.sidebar.text_input("Couch Angles (comma-separated)", "")
query_ptv_vol = st.sidebar.number_input("Minimum PTV volume (cc):", value=0)
# Checkbox: Only planner beams
only_planner = st.sidebar.checkbox("Show only planner beams", value=True)
results_df = filter_matched_data(
filtered_patients, query_ptv_vol, beam_gantry_filter,
beam_collimator_filter, beam_energy_filter, beam_couch_filter,
only_planner, all_metadata
)
# Summary Table
# st.dataframe(results_df)
grid_response = show_aggrid_table(results_df)
selected_rows = grid_response.get("selected_rows", pd.DataFrame())
if isinstance(selected_rows, pd.DataFrame):
print(selected_rows)
if not selected_rows.empty:
for _, row in selected_rows.iterrows():
pid = row["patient_id"]
st.markdown(f"### Patient: {pid}")
st.markdown("#### Structures")
st.dataframe(pd.DataFrame(all_metadata[pid]["structures"]))
st.markdown("#### Beams")
st.dataframe(pd.DataFrame(all_metadata[pid]["beams"]))
# selected_patient = st.selectbox("Select patient for detailed view", results_df["patient_id"] if not results_df.empty else [])
# if selected_patient:
# structs = all_metadata[selected_patient]["structures"]
# beams = all_metadata[selected_patient]["beams"]
# st.subheader(f"🏗️ Structures for {selected_patient}")
# st.dataframe(pd.DataFrame(structs), use_container_width=True)
# st.subheader(f"📡 Beams for {selected_patient}")
# st.dataframe(pd.DataFrame(beams), use_container_width=True)
with st.expander("Download matched patients"):
# Multi-select and download
to_download = st.sidebar.multiselect("Select Patients to Download", results_df["patient_id"].tolist())
local_dir = st.sidebar.text_input("Enter local directory to download data:", value="./downloaded")
if st.sidebar.button("Download Selected Patients"):
if to_download:
patient_to_beams = {
row["patient_id"]: row["beam_ids"] for ind, row in results_df.iterrows() if ind in to_download
}
for pid, beam_ids in patient_to_beams.items():
download_data(REPO_ID, [pid], beam_ids=beam_ids, planner_beam_ids=False, local_dir=local_dir)
st.success("Download complete!")
else:
st.warning("No patients selected.")
# if st.button("Download Data"):
# patients_to_download = results_df["patient_id"].tolist()
# download_data(REPO_ID, patients_to_download, planner_beam_ids=True, local_dir=local_dir)
# st.success("Download complete!")
if __name__ == "__main__":
main()