PorYoung's picture
add so-vits-svc (modified webUI.py)
6e79ec6
raw
history blame
9.34 kB
import io
import logging
import time
from pathlib import Path
import librosa
import matplotlib.pyplot as plt
import numpy as np
import soundfile
from inference import infer_tool
from inference import slicer
from inference.infer_tool import Svc
logging.getLogger('numba').setLevel(logging.WARNING)
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
def main():
import argparse
parser = argparse.ArgumentParser(description='sovits4 inference')
# Required
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth",
help='Path to the model.')
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json",
help='Path to the configuration file.')
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'],
help='Target speaker name for conversion.')
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["ๅ›ใฎ็Ÿฅใ‚‰ใชใ„็‰ฉ่ชž-src.wav"],
help='A list of wav file names located in the raw folder.')
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0],
help='Pitch adjustment, supports positive and negative (semitone) values.')
# Optional
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
help='Automatic pitch prediction for voice conversion. Do not enable this when converting songs as it can cause serious pitch issues.')
parser.add_argument('-cl', '--clip', type=float, default=0,
help='Voice forced slicing. Set to 0 to turn off(default), duration in seconds.')
parser.add_argument('-lg', '--linear_gradient', type=float, default=0,
help='The cross fade length of two audio slices in seconds. If there is a discontinuous voice after forced slicing, you can adjust this value. Otherwise, it is recommended to use. Default 0.')
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt",
help='Path to the clustering model. Fill in any value if clustering is not trained.')
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0,
help='Proportion of the clustering solution, range 0-1. Fill in 0 if the clustering model is not trained.')
parser.add_argument('-fmp', '--f0_mean_pooling', action='store_true', default=False,
help='Apply mean filter (pooling) to f0, which may improve some hoarse sounds. Enabling this option will reduce inference speed.')
parser.add_argument('-eh', '--enhance', action='store_true', default=False,
help='Whether to use NSF_HIFIGAN enhancer. This option has certain effect on sound quality enhancement for some models with few training sets, but has negative effect on well-trained models, so it is turned off by default.')
# generally keep default
parser.add_argument('-sd', '--slice_db', type=int, default=-40,
help='Loudness for automatic slicing. For noisy audio it can be set to -30')
parser.add_argument('-d', '--device', type=str, default=None,
help='Device used for inference. None means auto selecting.')
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4,
help='Affect pronunciation and sound quality.')
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5,
help='Due to unknown reasons, there may be abnormal noise at the beginning and end. It will disappear after padding a short silent segment.')
parser.add_argument('-wf', '--wav_format', type=str, default='flac',
help='output format')
parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75,
help='Proportion of cross length retention, range (0-1]. After forced slicing, the beginning and end of each segment need to be discarded.')
parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0,
help='Adapt the enhancer to a higher range of sound. The unit is the semitones, default 0.')
parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,
help='F0 Filtering threshold: This parameter is valid only when f0_mean_pooling is enabled. Values range from 0 to 1. Reducing this value reduces the probability of being out of tune, but increases matte.')
args = parser.parse_args()
clean_names = args.clean_names
trans = args.trans
spk_list = args.spk_list
slice_db = args.slice_db
wav_format = args.wav_format
auto_predict_f0 = args.auto_predict_f0
cluster_infer_ratio = args.cluster_infer_ratio
noice_scale = args.noice_scale
pad_seconds = args.pad_seconds
clip = args.clip
lg = args.linear_gradient
lgr = args.linear_gradient_retain
F0_mean_pooling = args.f0_mean_pooling
enhance = args.enhance
enhancer_adaptive_key = args.enhancer_adaptive_key
cr_threshold = args.f0_filter_threshold
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path,enhance)
infer_tool.mkdir(["raw", "results"])
infer_tool.fill_a_to_b(trans, clean_names)
for clean_name, tran in zip(clean_names, trans):
raw_audio_path = f"raw/{clean_name}"
if "." not in raw_audio_path:
raw_audio_path += ".wav"
infer_tool.format_wav(raw_audio_path)
wav_path = Path(raw_audio_path).with_suffix('.wav')
chunks = slicer.cut(wav_path, db_thresh=slice_db)
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
per_size = int(clip*audio_sr)
lg_size = int(lg*audio_sr)
lg_size_r = int(lg_size*lgr)
lg_size_c_l = (lg_size-lg_size_r)//2
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
for spk in spk_list:
audio = []
for (slice_tag, data) in audio_data:
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
if slice_tag:
print('jump empty segment')
_audio = np.zeros(length)
audio.extend(list(infer_tool.pad_array(_audio, length)))
continue
if per_size != 0:
datas = infer_tool.split_list_by_n(data, per_size,lg_size)
else:
datas = [data]
for k,dat in enumerate(datas):
per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length
if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
# padd
pad_len = int(audio_sr * pad_seconds)
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
raw_path = io.BytesIO()
soundfile.write(raw_path, dat, audio_sr, format="wav")
raw_path.seek(0)
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noice_scale=noice_scale,
F0_mean_pooling = F0_mean_pooling,
enhancer_adaptive_key = enhancer_adaptive_key,
cr_threshold = cr_threshold
)
_audio = out_audio.cpu().numpy()
pad_len = int(svc_model.target_sample * pad_seconds)
_audio = _audio[pad_len:-pad_len]
_audio = infer_tool.pad_array(_audio, per_length)
if lg_size!=0 and k!=0:
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr != 1 else audio[-lg_size:]
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr != 1 else _audio[0:lg_size]
lg_pre = lg1*(1-lg)+lg2*lg
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr != 1 else audio[0:-lg_size]
audio.extend(lg_pre)
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr != 1 else _audio[lg_size:]
audio.extend(list(_audio))
key = "auto" if auto_predict_f0 else f"{tran}key"
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
svc_model.clear_empty()
if __name__ == '__main__':
main()