Pontonkid commited on
Commit
4e214e0
·
verified ·
1 Parent(s): 2a55fb3

Create preprocess.py

Browse files
Files changed (1) hide show
  1. preprocess.py +103 -0
preprocess.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import numpy as np
3
+ import pandas as pd
4
+ import requests
5
+ import streamlit as st
6
+ from bs4 import BeautifulSoup
7
+ from sentence_transformers import SentenceTransformer, util
8
+
9
+ def preprocess():
10
+ # Base URL for navigation
11
+ base_url = 'https://courses.analyticsvidhya.com/collections/courses?page='
12
+ course_list_url = "https://courses.analyticsvidhya.com/"
13
+
14
+ # List to hold course data
15
+ courses = []
16
+
17
+ page_number = 1 # Start with the first page
18
+ while True:
19
+ # Construct URL for the current page
20
+ current_page_url = base_url + str(page_number)
21
+ print(f"Processing page {page_number}...")
22
+
23
+ # Get the current page content
24
+ response = requests.get(current_page_url)
25
+ if response.status_code != 200:
26
+ print(f"Failed to fetch page {page_number}. Status code: {response.status_code}")
27
+ break
28
+
29
+ soup = BeautifulSoup(response.content, 'html.parser')
30
+
31
+ # Find all course cards
32
+ course_cards = soup.find_all('li', class_='products__list-item')
33
+ if not course_cards:
34
+ print("No more courses found. Ending extraction.")
35
+ break
36
+
37
+ # Extract course data from each card
38
+ for course_card in course_cards:
39
+ title_tag = course_card.find('h3')
40
+ link_tag = course_card.find('a')
41
+
42
+ if title_tag and link_tag: # Check if both title and link exist
43
+ title = title_tag.text.strip()
44
+ course_link = link_tag['href']
45
+
46
+ # Construct full course URL (assume relative links)
47
+ course_url = course_list_url.rstrip('/') + course_link
48
+
49
+ # Visit each course link to get the description
50
+ course_response = requests.get(course_url)
51
+ if course_response.status_code == 200:
52
+ course_soup = BeautifulSoup(course_response.content, 'html.parser')
53
+ description_tag = course_soup.find('div', class_='fr-view') # Adjust based on actual class or tag
54
+ description = description_tag.text.strip() if description_tag else 'No description available'
55
+
56
+ curriculum_tag = course_soup.find('ul', class_='course-curriculum__chapter-content') # Adjust based on actual class or tag
57
+ curriculum = curriculum_tag.text.strip() if curriculum_tag else 'No curriculum available'
58
+
59
+ #enroll_tag = course_soup.find('article', class_='section__content section__content___ae733') # Adjust based on actual class or tag
60
+ #enroll = enroll_tag.text.strip() if enroll_tag else 'No enroll available'
61
+
62
+ instructor_tag = course_soup.find('section', class_='text-image section-height__medium section__content-alignment--left text-image___07200') # Adjust based on actual class or tag
63
+ instructor = instructor_tag.text.strip() if instructor_tag else 'No instructor available'
64
+
65
+ # Append the data to the list
66
+ courses.append({'title': title, 'description': description, 'Course curriculum': curriculum, 'About the Instructor': instructor})
67
+ else:
68
+ print(f"Failed to fetch course page: {course_url}")
69
+
70
+ # Sleep to avoid overwhelming the server (optional)
71
+ time.sleep(1)
72
+ else:
73
+ print("Skipped a course card due to missing title or link.")
74
+
75
+ # Move to the next page
76
+ page_number += 1
77
+ # break
78
+
79
+ # Save the collected data to a CSV file
80
+ df = pd.DataFrame(courses)
81
+ df.to_csv('courses.csv', index=False)
82
+ print("Data collection complete. Saved to courses.csv.")
83
+
84
+
85
+ # Load the data
86
+ df = pd.read_csv('courses.csv')
87
+
88
+ # Combine relevant text fields for embedding (e.g., title, description, curriculum)
89
+ df['combined_text'] = df['title'] + ' ' + df['description'] + ' ' + df['Course curriculum'] + ' ' + df['About the Instructor']
90
+
91
+ # Load a pre-trained model for embeddings
92
+ model = SentenceTransformer('all-MiniLM-L6-v2')
93
+
94
+ # Create embeddings for each course
95
+ embeddings = model.encode(df['combined_text'].tolist(), convert_to_tensor=True)
96
+
97
+ # Save embeddings and DataFrame for later use
98
+ np.save('course_embeddings.npy', embeddings)
99
+ df.to_csv('courses_with_embeddings.csv', index=False)
100
+
101
+ # Load embeddings and DataFrame
102
+ embeddings = np.load('course_embeddings.npy')
103
+ df = pd.read_csv('courses_with_embeddings.csv')