Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,49 +1,42 @@
|
|
| 1 |
-
from
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
-
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
@app.post("/classify", response_model=EmailResponse)
|
| 28 |
-
async def classify_email(request: EmailRequest):
|
| 29 |
-
try:
|
| 30 |
-
# Tokenize the input text
|
| 31 |
-
inputs = tokenizer(request.text, return_tensors="pt", truncation=True, max_length=512)
|
| 32 |
-
|
| 33 |
-
# Get model predictions
|
| 34 |
-
with torch.no_grad():
|
| 35 |
-
outputs = model(**inputs)
|
| 36 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 37 |
-
|
| 38 |
-
# Get the predicted class and confidence
|
| 39 |
-
predicted_class = torch.argmax(predictions).item()
|
| 40 |
-
confidence = predictions[0][predicted_class].item()
|
| 41 |
-
|
| 42 |
-
return EmailResponse(category=predicted_class + 1, confidence=confidence)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 47 |
if __name__ == "__main__":
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
def get_classifier():
|
| 4 |
+
classifier = pipeline(
|
| 5 |
+
"zero-shot-classification",
|
| 6 |
+
model="sberbank-ai/rugpt3small_based_on_gpt2",
|
| 7 |
+
framework="pt"
|
| 8 |
+
)
|
| 9 |
+
return classifier
|
| 10 |
|
| 11 |
+
def classify_email(text):
|
| 12 |
+
classifier = get_classifier()
|
| 13 |
+
|
| 14 |
+
candidate_labels = [
|
| 15 |
+
"Клиент хочет назначить встречу",
|
| 16 |
+
"Клиент не заинтересован или отказывается",
|
| 17 |
+
"Клиент задаёт уточняющие вопросы"
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
result = classifier(
|
| 21 |
+
text,
|
| 22 |
+
candidate_labels,
|
| 23 |
+
hypothesis_template="Это письмо о том, что {}."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Получаем индекс наиболее вероятной метки (0, 1 или 2)
|
| 27 |
+
label_index = result["labels"].index(result["labels"][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Возвращаем категорию (1, 2 или 3) и уверенность
|
| 30 |
+
return {
|
| 31 |
+
"category": label_index + 1,
|
| 32 |
+
"confidence": result["scores"][label_index],
|
| 33 |
+
"label": result["labels"][0]
|
| 34 |
+
}
|
| 35 |
|
| 36 |
+
# Пример использования
|
| 37 |
if __name__ == "__main__":
|
| 38 |
+
test_text = "Добрый день! Можно ли узнать подробнее о ваших услугах и ценах?"
|
| 39 |
+
result = classify_email(test_text)
|
| 40 |
+
print(f"Категория: {result['category']}")
|
| 41 |
+
print(f"Уверенность: {result['confidence']:.2f}")
|
| 42 |
+
print(f"Метка: {result['label']}")
|