Spaces:
Running
Running
| import logging | |
| import tempfile | |
| import gradio as gr | |
| import librosa | |
| import librosa.display | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import soundfile as sf | |
| from PIL import Image, ImageDraw, ImageFont | |
| import os | |
| import cv2 | |
| from moviepy.editor import VideoFileClip, AudioFileClip | |
| os.system("apt-get install -y fonts-dejavu") | |
| DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" | |
| DEFAULT_SAMPLE_RATE = 22050 | |
| logging.basicConfig(level=logging.INFO) | |
| logging.getLogger("httpx").setLevel(logging.WARNING) | |
| def load_font(font_path, max_font_size): | |
| try: | |
| return ImageFont.truetype(font_path, max_font_size) | |
| except IOError: | |
| logging.warning(f"Font not found at {font_path}. Using default font.") | |
| return ImageFont.load_default() | |
| except Exception as e: | |
| logging.error(f"An error occurred while loading the font: {e}") | |
| raise | |
| def create_text_image(text, font, base_width=512, height=256, margin=10, letter_spacing=5): | |
| draw = ImageDraw.Draw(Image.new("L", (1, 1))) | |
| text_widths = [ | |
| draw.textbbox((0, 0), char, font=font)[2] - draw.textbbox((0, 0), char, font=font)[0] | |
| for char in text | |
| ] | |
| text_width = sum(text_widths) + letter_spacing * (len(text) - 1) | |
| text_height = ( | |
| draw.textbbox((0, 0), text[0], font=font)[3] | |
| - draw.textbbox((0, 0), text[0], font=font)[1] | |
| ) | |
| width = max(base_width, text_width + margin * 2) | |
| height = max(height, text_height + margin * 2) | |
| image = Image.new("L", (width, height), "black") | |
| draw = ImageDraw.Draw(image) | |
| text_start_x = (width - text_width) // 2 | |
| text_start_y = (height - text_height) // 2 | |
| current_x = text_start_x | |
| for char, char_width in zip(text, text_widths): | |
| draw.text((current_x, text_start_y), char, font=font, fill="white") | |
| current_x += char_width + letter_spacing | |
| return np.array(image) | |
| def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE): | |
| flipped_image = np.flipud(image) | |
| S = flipped_image.astype(np.float32) / 255.0 * 100.0 | |
| y = librosa.griffinlim(S) | |
| return y | |
| def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing): | |
| font = load_font(DEFAULT_FONT_PATH, max_font_size) | |
| spec_image = create_text_image(text, font, base_width, height, margin, letter_spacing) | |
| y = spectrogram_image_to_audio(spec_image) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: | |
| audio_path = temp_audio.name | |
| sf.write(audio_path, y, DEFAULT_SAMPLE_RATE) | |
| S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE) | |
| S_dB = librosa.power_to_db(S, ref=np.max) | |
| plt.figure(figsize=(10, 4)) | |
| librosa.display.specshow(S_dB, sr=DEFAULT_SAMPLE_RATE, x_axis="time", y_axis="mel") | |
| plt.axis("off") | |
| plt.tight_layout(pad=0) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram: | |
| spectrogram_path = temp_spectrogram.name | |
| plt.savefig(spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True) | |
| plt.close() | |
| return audio_path, spectrogram_path | |
| def display_audio_spectrogram(audio_path): | |
| y, sr = librosa.load(audio_path, sr=None) | |
| S = librosa.feature.melspectrogram(y=y, sr=sr) | |
| S_dB = librosa.power_to_db(S, ref=np.max) | |
| plt.figure(figsize=(10, 4)) | |
| librosa.display.specshow(S_dB, sr=sr, x_axis="time", y_axis="mel") | |
| plt.axis("off") | |
| plt.tight_layout(pad=0) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram: | |
| spectrogram_path = temp_spectrogram.name | |
| plt.savefig(spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True) | |
| plt.close() | |
| return spectrogram_path | |
| def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE): | |
| image = Image.open(image_path).convert("L") | |
| image = np.array(image) | |
| y = spectrogram_image_to_audio(image, sr) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: | |
| img2audio_path = temp_audio.name | |
| sf.write(img2audio_path, y, sr) | |
| return img2audio_path | |
| def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing): | |
| logging.info(f"Generating audio and spectrogram for text:\n{text}\n") | |
| audio_path, spectrogram_path = create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing) | |
| return audio_path, spectrogram_path | |
| def gradio_image_to_audio_fn(upload_image): | |
| logging.info(f"Converting image to audio:\n{upload_image}\n") | |
| return image_to_spectrogram_audio(upload_image) | |
| def gradio_decode_fn(upload_audio): | |
| logging.info(f"Generating spectrogram for audio:\n{upload_audio}\n") | |
| return display_audio_spectrogram(upload_audio) | |
| def extract_audio(video_path): | |
| try: | |
| video = VideoFileClip(video_path) | |
| if video.audio is None: | |
| raise ValueError("No audio found in the video") | |
| audio_path = "extracted_audio.wav" | |
| video.audio.write_audiofile(audio_path) | |
| return audio_path | |
| except Exception as e: | |
| logging.error(f"Failed to extract audio: {e}") | |
| return None | |
| def extract_frames(video_path): | |
| try: | |
| video = cv2.VideoCapture(video_path) | |
| frames = [] | |
| success, frame = video.read() | |
| while success: | |
| frames.append(frame) | |
| success, frame = video.read() | |
| video.release() | |
| return frames | |
| except Exception as e: | |
| logging.error(f"Failed to extract frames: {e}") | |
| return None | |
| def frame_to_spectrogram(frame, sr=DEFAULT_SAMPLE_RATE): | |
| gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
| S = np.flipud(gray_frame.astype(np.float32) / 255.0 * 100.0) | |
| y = librosa.griffinlim(S) | |
| return y | |
| def save_audio(y, sr=DEFAULT_SAMPLE_RATE): | |
| audio_path = 'output_frame_audio.wav' | |
| sf.write(audio_path, y, sr) | |
| return audio_path | |
| def save_spectrogram_image(S, frame_number, temp_dir): | |
| plt.figure(figsize=(10, 4)) | |
| librosa.display.specshow(S) | |
| plt.tight_layout() | |
| image_path = os.path.join(temp_dir, f'spectrogram_frame_{frame_number}.png') | |
| plt.savefig(image_path) | |
| plt.close() | |
| return image_path | |
| def process_video_frames(frames, sr=DEFAULT_SAMPLE_RATE, temp_dir=None): | |
| processed_frames = [] | |
| total_frames = len(frames) | |
| for i, frame in enumerate(frames): | |
| y = frame_to_spectrogram(frame, sr) | |
| S = librosa.feature.melspectrogram(y=y, sr=sr) | |
| image_path = save_spectrogram_image(S, i, temp_dir) | |
| processed_frame = cv2.imread(image_path) | |
| processed_frames.append(processed_frame) | |
| return processed_frames | |
| def save_video_from_frames(frames, output_path, fps=30): | |
| height, width, layers = frames[0].shape | |
| video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) | |
| for frame in frames: | |
| video.write(frame) | |
| video.release() | |
| def add_audio_to_video(video_path, audio_path, output_path): | |
| try: | |
| video = VideoFileClip(video_path) | |
| audio = AudioFileClip(audio_path) | |
| final_video = video.set_audio(audio) | |
| final_video.write_videofile(output_path, codec='libx264', audio_codec='aac') | |
| except Exception as e: | |
| logging.error(f"Failed to add audio to video: {e}") | |
| def process_video(video_path): | |
| try: | |
| video = VideoFileClip(video_path) | |
| if video.duration > 10: | |
| video = video.subclip(0, 10) | |
| temp_trimmed_video_path = "trimmed_video.mp4" | |
| video.write_videofile(temp_trimmed_video_path, codec='libx264') | |
| video_path = temp_trimmed_video_path | |
| except Exception as e: | |
| return f"Failed to load video: {e}" | |
| audio_path = extract_audio(video_path) | |
| if audio_path is None: | |
| return "Failed to extract audio from video." | |
| frames = extract_frames(video_path) | |
| if frames is None: | |
| return "Failed to extract frames from video." | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| processed_frames = process_video_frames(frames, temp_dir=temp_dir) | |
| temp_video_path = os.path.join(temp_dir, 'processed_video.mp4') | |
| save_video_from_frames(processed_frames, temp_video_path) | |
| output_video_path = 'output_video_with_audio.mp4' | |
| add_audio_to_video(temp_video_path, audio_path, output_video_path) | |
| return output_video_path | |
| def create_gradio_interface(): | |
| with gr.Blocks(title="Audio Steganography", css="footer{display:none !important}", theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as txt2spec: | |
| with gr.Tab("Text to Spectrogram"): | |
| with gr.Group(): | |
| text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Enter the text you want to convert to spectrogram:") | |
| with gr.Row(variant="panel"): | |
| base_width = gr.Slider(value=512, label="Image Width", visible=False) | |
| height = gr.Slider(value=256, label="Image Height", visible=False) | |
| max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size") | |
| margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent") | |
| letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing") | |
| generate_button = gr.Button("Generate", variant="primary", size="lg") | |
| with gr.Column(variant="panel"): | |
| gr.Markdown("Caution! The sound is too loud. It is recommended to familiarize yourself with audio steganography before using this application.") | |
| with gr.Group(): | |
| output_audio = gr.Audio(type="filepath", label="Generated audio") | |
| output_spectrogram = gr.Image(type="filepath", label="Spectrogram") | |
| generate_button.click(gradio_interface_fn, inputs=[text, base_width, height, max_font_size, margin, letter_spacing], outputs=[output_audio, output_spectrogram]) | |
| with gr.Tab("Image to Spectrogram"): | |
| with gr.Group(): | |
| with gr.Column(): | |
| upload_image = gr.Image(type="filepath", label="Upload image") | |
| convert_button = gr.Button("Convert to audio", variant="primary", size="lg") | |
| with gr.Column(variant="panel"): | |
| gr.Markdown("Caution! The sound is too loud. It is recommended to familiarize yourself with audio steganography before using this application.") | |
| output_audio_from_image = gr.Audio(type="filepath", label="Generated audio") | |
| convert_button.click(gradio_image_to_audio_fn, inputs=[upload_image], outputs=[output_audio_from_image]) | |
| with gr.Tab("Audio to Spectrogram"): | |
| with gr.Group(): | |
| with gr.Column(): | |
| upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3) | |
| decode_button = gr.Button("Show spectrogram", variant="primary", size="lg") | |
| with gr.Column(variant="panel"): | |
| decoded_image = gr.Image(type="filepath", label="Audio Spectrogram") | |
| decode_button.click(gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image]) | |
| with gr.Tab("Video to Spectrogram"): | |
| with gr.Group(): | |
| video_input = gr.Video(label="Upload video") | |
| generate_button = gr.Button("Generate", variant="primary", size="lg") | |
| with gr.Column(variant="panel"): | |
| video_output = gr.Video(label="Video Spectrogram") | |
| generate_button.click(process_video, inputs=[video_input], outputs=[video_output]) | |
| return txt2spec | |
| if __name__ == "__main__": | |
| txt2spec = create_gradio_interface() | |
| txt2spec.launch(share=True) | |