Polarisailabs commited on
Commit
376e519
·
verified ·
1 Parent(s): 7db4207

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +13 -0
  2. app.py +464 -0
  3. requirements.txt +7 -0
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: MarisTest
3
+ emoji: 🏢
4
+ colorFrom: red
5
+ colorTo: gray
6
+ sdk: gradio
7
+ sdk_version: 5.44.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import json
4
+ import pathlib
5
+ import shutil
6
+ from typing import List, Tuple, Dict
7
+
8
+ import gradio as gr
9
+ import numpy as np
10
+ import faiss
11
+ from sentence_transformers import SentenceTransformer
12
+ from pypdf import PdfReader
13
+ import fitz # PyMuPDF
14
+ from collections import defaultdict
15
+ from openai import OpenAI
16
+
17
+ # =========================
18
+ # LLM Endpoint (NVIDIA Integrate via OpenAI SDK; non-streaming)
19
+ # =========================
20
+
21
+ API_KEY = os.environ.get("NVAPI_KEY")
22
+
23
+ if not API_KEY:
24
+ raise RuntimeError("Missing NVAPI_KEY (set it in Hugging Face: Settings → Variables and secrets).")
25
+
26
+ client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY)
27
+
28
+ MODEL_NAME = "openai/gpt-oss-120b:free"
29
+ GEN_TEMPERATURE = 0.2
30
+ GEN_TOP_P = 0.95
31
+ GEN_MAX_TOKENS = 1024
32
+
33
+ # =========================
34
+ # Vector Retrieval/Persistence (prefer /data; otherwise ./store)
35
+ # =========================
36
+
37
+ EMB_MODEL_NAME = "intfloat/multilingual-e5-base" # Supports both Chinese and English
38
+
39
+ def choose_store_dir() -> Tuple[str, bool]:
40
+ """Return (store_dir, is_persistent). Prefer /data/rag_store if writable."""
41
+ data_root = "/data"
42
+ if os.path.isdir(data_root) and os.access(data_root, os.W_OK):
43
+ d = os.path.join(data_root, "rag_store")
44
+ try:
45
+ os.makedirs(d, exist_ok=True)
46
+ testf = os.path.join(d, ".write_test")
47
+ with open(testf, "w", encoding="utf-8") as f:
48
+ f.write("ok")
49
+ os.remove(testf)
50
+ return d, True
51
+ except Exception:
52
+ pass
53
+
54
+ d = os.path.join(os.getcwd(), "store")
55
+ os.makedirs(d, exist_ok=True)
56
+ return d, False
57
+
58
+ STORE_DIR, IS_PERSISTENT = choose_store_dir()
59
+ META_PATH = os.path.join(STORE_DIR, "meta.json")
60
+ INDEX_PATH = os.path.join(STORE_DIR, "faiss.index")
61
+
62
+ # One-time migration from old ./store to /data/rag_store (if not yet exists)
63
+ LEGACY_STORE_DIR = os.path.join(os.getcwd(), "store")
64
+
65
+ def migrate_legacy_if_any():
66
+ try:
67
+ if IS_PERSISTENT:
68
+ legacy_meta = os.path.join(LEGACY_STORE_DIR, "meta.json")
69
+ legacy_index = os.path.join(LEGACY_STORE_DIR, "faiss.index")
70
+
71
+ if (not os.path.exists(META_PATH) or not os.path.exists(INDEX_PATH)) \
72
+ and os.path.isdir(LEGACY_STORE_DIR) \
73
+ and os.path.exists(legacy_meta) and os.path.exists(legacy_index):
74
+ shutil.copyfile(legacy_meta, META_PATH)
75
+ shutil.copyfile(legacy_index, INDEX_PATH)
76
+ except Exception:
77
+ pass
78
+
79
+ migrate_legacy_if_any()
80
+
81
+ _emb_model = None
82
+ _index: faiss.Index = None
83
+ _meta: Dict[str, Dict] = {}
84
+
85
+ # ========== Adjustable Parameter Defaults ==========
86
+ DEFAULT_TOP_K = 6
87
+ DEFAULT_POOL_K = 40
88
+ DEFAULT_PER_SOURCE_CAP = 2
89
+ DEFAULT_STRATEGY = "mmr" # "mmr" or "round_robin"
90
+ DEFAULT_MMR_LAMBDA = 0.5
91
+
92
+ # ---------- Basic Tools ----------
93
+
94
+ def get_emb_model():
95
+ global _emb_model
96
+ if _emb_model is None:
97
+ _emb_model = SentenceTransformer(EMB_MODEL_NAME)
98
+ return _emb_model
99
+
100
+ def _ensure_index(dim: int):
101
+ global _index
102
+ if _index is None:
103
+ _index = faiss.IndexFlatIP(dim) # Normalize vectors first → inner product = cosine
104
+
105
+ def _persist():
106
+ faiss.write_index(_index, INDEX_PATH)
107
+ with open(META_PATH, "w", encoding="utf-8") as f:
108
+ json.dump(_meta, f, ensure_ascii=False)
109
+
110
+ def _load_if_any():
111
+ global _index, _meta
112
+ if os.path.exists(INDEX_PATH) and os.path.exists(META_PATH):
113
+ _index = faiss.read_index(INDEX_PATH)
114
+ with open(META_PATH, "r", encoding="utf-8") as f:
115
+ _meta = json.load(f)
116
+
117
+ def _chunk_text(text: str, chunk_size: int = 800, overlap: int = 120) -> List[str]:
118
+ text = text.replace("\u0000", "")
119
+ res, i, n = [], 0, len(text)
120
+ while i < n:
121
+ j = min(i + chunk_size, n)
122
+ seg = text[i:j].strip()
123
+ if seg:
124
+ res.append(seg)
125
+ i = max(0, j - overlap)
126
+ if j >= n:
127
+ break
128
+ return res
129
+
130
+ # ---------- Robust File Reading ----------
131
+
132
+ def _read_bytes(file) -> bytes:
133
+ if isinstance(file, dict):
134
+ p = file.get("path") or file.get("name")
135
+ if p and os.path.exists(p):
136
+ with open(p, "rb") as f:
137
+ return f.read()
138
+ if "data" in file and isinstance(file["data"], (bytes, bytearray)):
139
+ return bytes(file["data"])
140
+
141
+ if isinstance(file, (str, pathlib.Path)):
142
+ with open(file, "rb") as f:
143
+ return f.read()
144
+
145
+ if hasattr(file, "read"):
146
+ try:
147
+ if hasattr(file, "seek"):
148
+ try:
149
+ file.seek(0)
150
+ except Exception:
151
+ pass
152
+ return file.read()
153
+ finally:
154
+ try:
155
+ file.close()
156
+ except Exception:
157
+ pass
158
+
159
+ raise ValueError("Unsupported file type from gr.File")
160
+
161
+ def _decode_best_effort(raw: bytes) -> str:
162
+ for enc in ["utf-8", "cp932", "shift_jis", "cp950", "big5", "gb18030", "latin-1"]:
163
+ try:
164
+ return raw.decode(enc)
165
+ except Exception:
166
+ continue
167
+ return raw.decode("utf-8", errors="ignore")
168
+
169
+ def _read_pdf(file_bytes: bytes) -> str:
170
+ # 1) PyMuPDF
171
+ try:
172
+ with fitz.open(stream=file_bytes, filetype="pdf") as doc:
173
+ if doc.is_encrypted:
174
+ try:
175
+ doc.authenticate("") # Try empty password
176
+ except Exception:
177
+ pass
178
+ texts = [(page.get_text("text") or "") for page in doc]
179
+ txt = "\n".join(texts)
180
+ if txt.strip():
181
+ return txt
182
+ except Exception:
183
+ pass
184
+
185
+ # 2) fallback: pypdf
186
+ try:
187
+ reader = PdfReader(io.BytesIO(file_bytes))
188
+ pages = []
189
+ for p in reader.pages:
190
+ try:
191
+ pages.append(p.extract_text() or "")
192
+ except Exception:
193
+ pages.append("")
194
+ return "\n".join(pages)
195
+ except Exception:
196
+ return ""
197
+
198
+ def _read_any(file) -> str:
199
+ if isinstance(file, dict):
200
+ name = (file.get("orig_name") or file.get("name") or file.get("path") or "upload").lower()
201
+ else:
202
+ name = getattr(file, "name", None) or (str(file) if isinstance(file, (str, pathlib.Path)) else "upload")
203
+ name = name.lower()
204
+
205
+ raw = _read_bytes(file)
206
+ if name.endswith(".pdf"):
207
+ return _read_pdf(raw).replace("\u0000", "")
208
+ return _decode_best_effort(raw).replace("\u0000", "")
209
+
210
+ # ---------- Build Corpus ----------
211
+
212
+ def build_corpus(files) -> str:
213
+ if not files:
214
+ return "No files selected."
215
+
216
+ emb_model = get_emb_model()
217
+ chunks, sources, failed = [], [], []
218
+ total_chars = 0
219
+
220
+ for f in files:
221
+ if isinstance(f, dict):
222
+ fname = f.get("orig_name") or f.get("name") or f.get("path") or "uploaded"
223
+ else:
224
+ fname = getattr(f, "name", None) or (os.path.basename(f) if isinstance(f, (str, pathlib.Path)) else "uploaded")
225
+
226
+ try:
227
+ text = _read_any(f) or ""
228
+ total_chars += len(text)
229
+ parts = _chunk_text(text)
230
+ if not parts:
231
+ failed.append(fname)
232
+ continue
233
+ chunks.extend(parts)
234
+ sources.extend([fname] * len(parts))
235
+ except Exception as e:
236
+ failed.append(f"{fname} (err: {e})")
237
+
238
+ if not chunks:
239
+ tier = "Persistent (/data)" if IS_PERSISTENT else "Ephemeral (./store)"
240
+ return f"No text extracted (please check file type/encoding; read {total_chars} characters this time).\nCurrent storage path: {STORE_DIR} [{tier}]"
241
+
242
+ passages = [f"passage: {c}" for c in chunks] # e5 prefix
243
+ vec = emb_model.encode(passages, batch_size=64, convert_to_numpy=True, normalize_embeddings=True)
244
+
245
+ _ensure_index(vec.shape[1])
246
+ _index.add(vec)
247
+
248
+ base = len(_meta)
249
+ for i, (src, c) in enumerate(zip(sources, chunks)):
250
+ _meta[str(base + i)] = {"source": src, "text": c}
251
+
252
+ _persist()
253
+
254
+ msg = f"Indexing complete: added {len(chunks)} chunks; current total chunks in corpus ≈ {_index.ntotal}."
255
+ if failed:
256
+ preview = ", ".join(failed[:5])
257
+ more = "" if len(failed) <= 5 else f" (and {len(failed)-5} more not shown)"
258
+ msg += f"\nNote: {len(failed)} files failed to extract text or were empty: {preview}{more}"
259
+
260
+ tier = "Persistent (/data)" if IS_PERSISTENT else "Ephemeral (./store)"
261
+ msg += f"\nCurrent storage path: {STORE_DIR} [{tier}]"
262
+
263
+ return msg
264
+
265
+ # ---------- Retrieval (Candidate Pool) ----------
266
+
267
+ def _encode_query_vec(query: str) -> np.ndarray:
268
+ return get_emb_model().encode([f"query: {query}"], convert_to_numpy=True, normalize_embeddings=True)
269
+
270
+ def retrieve_candidates(qvec: np.ndarray, pool_k: int = DEFAULT_POOL_K) -> List[Tuple[str, float]]:
271
+ if _index is None or _index.ntotal == 0:
272
+ return []
273
+
274
+ pool_k = min(pool_k, _index.ntotal)
275
+ D, I = _index.search(qvec, pool_k)
276
+ return [(str(idx), float(score)) for idx, score in zip(I[0], D[0]) if idx != -1]
277
+
278
+ # ---------- Diversification Strategies ----------
279
+
280
+ def select_diverse_by_source(cands: List[Tuple[str, float]], top_k: int = DEFAULT_TOP_K, per_source_cap: int = DEFAULT_PER_SOURCE_CAP) -> List[Tuple[str, float]]:
281
+ if not cands:
282
+ return []
283
+
284
+ by_src: Dict[str, List[Tuple[str, float]]] = defaultdict(list)
285
+ for cid, s in cands:
286
+ m = _meta.get(cid)
287
+ if not m:
288
+ continue
289
+ by_src[m["source"]].append((cid, s))
290
+
291
+ for src in by_src:
292
+ by_src[src] = by_src[src][:per_source_cap]
293
+
294
+ picked, src_items, ptrs = [], [(s, it) for s, it in by_src.items()], {s: 0 for s in by_src}
295
+ while len(picked) < top_k:
296
+ advanced = False
297
+ for src, items in src_items:
298
+ i = ptrs[src]
299
+ if i < len(items):
300
+ picked.append(items[i])
301
+ ptrs[src] = i + 1
302
+ advanced = True
303
+ if len(picked) >= top_k:
304
+ break
305
+ if not advanced:
306
+ break
307
+
308
+ if len(picked) < top_k:
309
+ seen = {cid for cid, _ in picked}
310
+ for cid, s in cands:
311
+ if cid not in seen:
312
+ picked.append((cid, s))
313
+ seen.add(cid)
314
+ if len(picked) >= top_k:
315
+ break
316
+
317
+ return picked[:top_k]
318
+
319
+ def _encode_chunks_text(cids: List[str]) -> np.ndarray:
320
+ texts = [f"passage: {(_meta.get(cid) or {}).get('text','')}" for cid in cids]
321
+ return get_emb_model().encode(texts, convert_to_numpy=True, normalize_embeddings=True)
322
+
323
+ def select_diverse_mmr(cands: List[Tuple[str, float]], qvec: np.ndarray, top_k: int = DEFAULT_TOP_K, mmr_lambda: float = DEFAULT_MMR_LAMBDA) -> List[Tuple[str, float]]:
324
+ if not cands:
325
+ return []
326
+
327
+ cids = [cid for cid, _ in cands]
328
+ cvecs = _encode_chunks_text(cids)
329
+ sim_to_q = (cvecs @ qvec.T).reshape(-1)
330
+
331
+ selected, remaining = [], set(range(len(cids)))
332
+ while len(selected) < min(top_k, len(cids)):
333
+ if not selected:
334
+ i = int(np.argmax(sim_to_q))
335
+ selected.append(i)
336
+ remaining.remove(i)
337
+ continue
338
+
339
+ S = cvecs[selected]
340
+ sim_to_S = (cvecs[list(remaining)] @ S.T)
341
+ max_sim_to_S = sim_to_S.max(axis=1) if sim_to_S.size > 0 else np.zeros((len(remaining),), dtype=np.float32)
342
+
343
+ sim_q_rem = sim_to_q[list(remaining)]
344
+ mmr_scores = mmr_lambda * sim_q_rem - (1.0 - mmr_lambda) * max_sim_to_S
345
+
346
+ j_rel = int(np.argmax(mmr_scores))
347
+ j = list(remaining)[j_rel]
348
+ selected.append(j)
349
+ remaining.remove(j)
350
+
351
+ return [(cids[i], float(sim_to_q[i])) for i in selected][:top_k]
352
+
353
+ def retrieve_diverse(query: str,
354
+ top_k: int = DEFAULT_TOP_K,
355
+ pool_k: int = DEFAULT_POOL_K,
356
+ per_source_cap: int = DEFAULT_PER_SOURCE_CAP,
357
+ strategy: str = DEFAULT_STRATEGY,
358
+ mmr_lambda: float = DEFAULT_MMR_LAMBDA) -> List[Tuple[str, float]]:
359
+ qvec = _encode_query_vec(query)
360
+ cands = retrieve_candidates(qvec, pool_k=pool_k)
361
+
362
+ if strategy == "mmr":
363
+ return select_diverse_mmr(cands, qvec, top_k=top_k, mmr_lambda=mmr_lambda)
364
+ return select_diverse_by_source(cands, top_k=top_k, per_source_cap=per_source_cap)
365
+
366
+ # ---------- Format Chunks ----------
367
+
368
+ def _format_ctx(hits: List[Tuple[str, float]]) -> str:
369
+ if not hits:
370
+ return ""
371
+
372
+ lines = []
373
+ for cid, _ in hits:
374
+ m = _meta.get(cid)
375
+ if not m:
376
+ continue
377
+ source_clean = m.get("source", "")
378
+ text_clean = (m.get("text", "") or "").replace("\n", " ")
379
+ lines.append(f"[{cid}] ({source_clean}) " + text_clean)
380
+
381
+ return "\n".join(lines[:10])
382
+
383
+ # =========================
384
+ # LLM Conversation (non-streaming → avoid StopAsyncIteration)
385
+ # =========================
386
+
387
+ def chat_fn(message, history, strategy, top_k, pool_k, per_source_cap, mmr_lambda):
388
+ hits = retrieve_diverse(
389
+ message,
390
+ top_k=int(top_k),
391
+ pool_k=int(pool_k),
392
+ per_source_cap=int(per_source_cap),
393
+ strategy=str(strategy),
394
+ mmr_lambda=float(mmr_lambda),
395
+ )
396
+
397
+ ctx = _format_ctx(hits) if hits else "(Current index is empty or no matching chunks found)"
398
+
399
+ sys_blocks = [
400
+ "You are a rigorous real estate market research assistant. Your answers must be based on retrieved content with evidence and source numbers cited. If retrieval is insufficient, please clearly explain the shortcomings.",
401
+ f"Below are the available reference chunks (with numbers and sources). When answering, please cite the numbers, e.g., [3].\n\n{ctx}",
402
+ ]
403
+
404
+ messages = [{"role": "system", "content": "\n\n".join(sys_blocks)}]
405
+ for u, a in history:
406
+ messages.append({"role": "user", "content": u})
407
+ messages.append({"role": "assistant", "content": a})
408
+ messages.append({"role": "user", "content": message})
409
+
410
+ try:
411
+ resp = client.chat.completions.create(
412
+ model=MODEL_NAME,
413
+ messages=messages,
414
+ temperature=GEN_TEMPERATURE,
415
+ top_p=GEN_TOP_P,
416
+ max_tokens=GEN_MAX_TOKENS,
417
+ stream=False, # Non-streaming, most stable
418
+ )
419
+ return resp.choices[0].message.content
420
+ except Exception as e:
421
+ return f"[Exception] {repr(e)}"
422
+
423
+ # =========================
424
+ # Gradio Interface (Slider/Dropdown takes effect immediately)
425
+ # =========================
426
+
427
+ with gr.Blocks(title="RAG (Candidate Pool + Diversification) | NVIDIA Integrate (Non-streaming)") as demo:
428
+ tier = "Persistent `/data`" if IS_PERSISTENT else "Ephemeral `./store` (may be lost on restart)"
429
+ gr.Markdown(
430
+ f"### RAG (Plain text, no OCR)\n"
431
+ f"- Current storage path: `{STORE_DIR}` [{tier}]\n"
432
+ "- Full corpus retrieval + MMR / Round-Robin diversification; chunks are labeled with source filename and chunk id.\n"
433
+ f"- LLM: `{MODEL_NAME}` (non-streaming, avoids StopAsyncIteration)."
434
+ )
435
+
436
+ with gr.Row():
437
+ with gr.Column(scale=1):
438
+ files = gr.File(file_count="multiple", file_types=[".pdf", ".txt"], label="Upload Corpus (multiple files allowed)")
439
+ out = gr.Textbox(label="Index Status", interactive=False)
440
+ gr.Button("Build/Update Index", variant="primary").click(build_corpus, inputs=files, outputs=out)
441
+
442
+ gr.Markdown("#### Retrieval Parameters (adjustable based on data volume)")
443
+ strategy = gr.Dropdown(choices=["mmr", "round_robin"], value=DEFAULT_STRATEGY, label="Diversification Strategy")
444
+ top_k = gr.Slider(1, 12, value=DEFAULT_TOP_K, step=1, label="Number of chunks for model (top_k)")
445
+ pool_k = gr.Slider(10, 200, value=DEFAULT_POOL_K, step=5, label="Candidate pool size (pool_k)")
446
+ per_source_cap = gr.Slider(1, 5, value=DEFAULT_PER_SOURCE_CAP, step=1, label="Per-source limit (for round_robin)")
447
+ mmr_lambda = gr.Slider(0.0, 1.0, value=DEFAULT_MMR_LAMBDA, step=0.05, label="MMR λ (higher = closer to query)")
448
+
449
+ with gr.Column(scale=2):
450
+ gr.ChatInterface(
451
+ fn=chat_fn, # Non-streaming function
452
+ additional_inputs=[strategy, top_k, pool_k, per_source_cap, mmr_lambda],
453
+ title="Chat (RAG)",
454
+ description=f"First retrieve from full corpus → diversify chunk selection → generate answer with {MODEL_NAME}.",
455
+ )
456
+
457
+ # Cold start: load existing index
458
+ try:
459
+ _load_if_any()
460
+ except Exception:
461
+ pass
462
+
463
+ if __name__ == "__main__":
464
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio>=4.0.0
2
+ openai>=1.40.0
3
+ faiss-cpu>=1.7.4
4
+ sentence-transformers>=2.7.0
5
+ pypdf>=4.2.0
6
+ pymupdf>=1.24.9
7
+ numpy>=1.26.0