LegalProdigy / app.py
Polarisailabs's picture
Upload 4 files
01ae44e verified
raw
history blame
14.4 kB
import os
import io
import json
import pathlib
import shutil
from typing import List, Tuple, Dict
import gradio as gr
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from pypdf import PdfReader
import fitz # PyMuPDF
from collections import defaultdict
from openai import OpenAI
# =========================
# LLM Endpoint
# =========================
API_KEY = os.environ.get("API_KEY")
if not API_KEY:
raise RuntimeError("Missing API_KEY (set it in Hugging Face: Settings → Variables and secrets).")
client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY)
# Model configuration
# The model was hardcoded to "deepseek/deepseek-r1:free" as requested.
# The previous default was "Deepseek".
SINGLE_MODEL_NAME = "deepseek/deepseek-r1:free"
GEN_TEMPERATURE = 0.2
GEN_TOP_P = 0.95
GEN_MAX_TOKENS = 1024
EMB_MODEL_NAME = "intfloat/multilingual-e5-base"
def choose_store_dir() -> Tuple[str, bool]:
data_root = "/data"
if os.path.isdir(data_root) and os.access(data_root, os.W_OK):
d = os.path.join(data_root, "rag_store")
try:
os.makedirs(d, exist_ok=True)
testf = os.path.join(d, ".write_test")
with open(testf, "w", encoding="utf-8") as f:
f.write("ok")
os.remove(testf)
return d, True
except Exception:
pass
d = os.path.join(os.getcwd(), "store")
os.makedirs(d, exist_ok=True)
return d, False
STORE_DIR, IS_PERSISTENT = choose_store_dir()
META_PATH = os.path.join(STORE_DIR, "meta.json")
INDEX_PATH = os.path.join(STORE_DIR, "faiss.index")
LEGACY_STORE_DIR = os.path.join(os.getcwd(), "store")
def migrate_legacy_if_any():
try:
if IS_PERSISTENT:
legacy_meta = os.path.join(LEGACY_STORE_DIR, "meta.json")
legacy_index = os.path.join(LEGACY_STORE_DIR, "faiss.index")
if (not os.path.exists(META_PATH) or not os.path.exists(INDEX_PATH)) \
and os.path.isdir(LEGACY_STORE_DIR) \
and os.path.exists(legacy_meta) and os.path.exists(legacy_index):
shutil.copyfile(legacy_meta, META_PATH)
shutil.copyfile(legacy_index, INDEX_PATH)
except Exception:
pass
migrate_legacy_if_any()
_emb_model = None
_index: faiss.Index = None
_meta: Dict[str, Dict] = {}
DEFAULT_TOP_K = 6
DEFAULT_POOL_K = 40
DEFAULT_PER_SOURCE_CAP = 2
DEFAULT_STRATEGY = "mmr"
DEFAULT_MMR_LAMBDA = 0.5
def get_emb_model():
global _emb_model
if _emb_model is None:
_emb_model = SentenceTransformer(EMB_MODEL_NAME)
return _emb_model
def _ensure_index(dim: int):
global _index
if _index is None:
_index = faiss.IndexFlatIP(dim)
def _persist():
faiss.write_index(_index, INDEX_PATH)
with open(META_PATH, "w", encoding="utf-8") as f:
json.dump(_meta, f, ensure_ascii=False)
def _load_if_any():
global _index, _meta
if os.path.exists(INDEX_PATH) and os.path.exists(META_PATH):
_index = faiss.read_index(INDEX_PATH)
with open(META_PATH, "r", encoding="utf-8") as f:
_meta = json.load(f)
def _chunk_text(text: str, chunk_size: int = 800, overlap: int = 120) -> List[str]:
text = text.replace("\u0000", "")
res, i, n = [], 0, len(text)
while i < n:
j = min(i + chunk_size, n)
seg = text[i:j].strip()
if seg:
res.append(seg)
i = max(0, j - overlap)
if j >= n:
break
return res
def _read_bytes(file) -> bytes:
if isinstance(file, dict):
p = file.get("path") or file.get("name")
if p and os.path.exists(p):
with open(p, "rb") as f:
return f.read()
if "data" in file and isinstance(file["data"], (bytes, bytearray)):
return bytes(file["data"])
if isinstance(file, (str, pathlib.Path)):
with open(file, "rb") as f:
return f.read()
if hasattr(file, "read"):
try:
if hasattr(file, "seek"):
try:
file.seek(0)
except Exception:
pass
return file.read()
finally:
try:
file.close()
except Exception:
pass
raise ValueError("Unsupported file type from gr.File")
def _decode_best_effort(raw: bytes) -> str:
for enc in ["utf-8", "cp932", "shift_jis", "cp950", "big5", "gb18030", "latin-1"]:
try:
return raw.decode(enc)
except Exception:
continue
return raw.decode("utf-8", errors="ignore")
def _read_pdf(file_bytes: bytes) -> str:
try:
with fitz.open(stream=file_bytes, filetype="pdf") as doc:
if doc.is_encrypted:
try:
doc.authenticate("")
except Exception:
pass
texts = [(page.get_text("text") or "") for page in doc]
txt = "\n".join(texts)
if txt.strip():
return txt
except Exception:
pass
try:
reader = PdfReader(io.BytesIO(file_bytes))
pages = []
for p in reader.pages:
try:
pages.append(p.extract_text() or "")
except Exception:
pages.append("")
return "\n".join(pages)
except Exception:
return ""
def _read_any(file) -> str:
if isinstance(file, dict):
name = (file.get("orig_name") or file.get("name") or file.get("path") or "upload").lower()
else:
name = getattr(file, "name", None) or (str(file) if isinstance(file, (str, pathlib.Path)) else "upload")
name = name.lower()
raw = _read_bytes(file)
if name.endswith(".pdf"):
return _read_pdf(raw).replace("\u0000", "")
return _decode_best_effort(raw).replace("\u0000", "")
DOCS_DIR = os.path.join(os.getcwd(), "docs")
def get_docs_files() -> List[str]:
if not os.path.isdir(DOCS_DIR):
return []
files = []
for fname in os.listdir(DOCS_DIR):
if fname.lower().endswith((".pdf", ".txt")):
files.append(os.path.join(DOCS_DIR, fname))
return files
def build_corpus_from_docs():
global _index, _meta
files = get_docs_files()
if not files:
return "No files found in docs folder."
emb_model = get_emb_model()
chunks, sources, failed = [], [], []
_index = None
_meta = {}
for f in files:
fname = os.path.basename(f)
try:
text = _read_any(f) or ""
parts = _chunk_text(text)
if not parts:
failed.append(fname)
continue
chunks.extend(parts)
sources.extend([fname] * len(parts))
except Exception:
failed.append(fname)
if not chunks:
return "No text extracted from docs."
passages = [f"passage: {c}" for c in chunks]
vec = emb_model.encode(passages, batch_size=64, convert_to_numpy=True, normalize_embeddings=True)
_ensure_index(vec.shape[1])
_index.add(vec)
for i, (src, c) in enumerate(zip(sources, chunks)):
_meta[str(i)] = {"source": src, "text": c}
_persist()
msg = f"Indexed {len(chunks)} chunks from {len(files)} files."
if failed:
msg += f" Failed files: {', '.join(failed)}"
return msg
def _encode_query_vec(query: str) -> np.ndarray:
return get_emb_model().encode([f"query: {query}"], convert_to_numpy=True, normalize_embeddings=True)
def retrieve_candidates(qvec: np.ndarray, pool_k: int = 40) -> List[Tuple[str, float]]:
if _index is None or _index.ntotal == 0:
return []
pool_k = min(pool_k, _index.ntotal)
D, I = _index.search(qvec, pool_k)
return [(str(idx), float(score)) for idx, score in zip(I[0], D[0]) if idx != -1]
def select_diverse_by_source(cands: List[Tuple[str, float]], top_k: int = 6, per_source_cap: int = 2) -> List[Tuple[str, float]]:
if not cands:
return []
by_src: Dict[str, List[Tuple[str, float]]] = defaultdict(list)
for cid, s in cands:
m = _meta.get(cid)
if not m:
continue
by_src[m["source"]].append((cid, s))
for src in by_src:
by_src[src] = by_src[src][:per_source_cap]
picked, src_items, ptrs = [], [(s, it) for s, it in by_src.items()], {s: 0 for s in by_src}
while len(picked) < top_k:
advanced = False
for src, items in src_items:
i = ptrs[src]
if i < len(items):
picked.append(items[i])
ptrs[src] = i + 1
advanced = True
if len(picked) >= top_k:
break
if not advanced:
break
if len(picked) < top_k:
seen = {cid for cid, _ in picked}
for cid, s in cands:
if cid not in seen:
picked.append((cid, s))
seen.add(cid)
if len(picked) >= top_k:
break
return picked[:top_k]
def _encode_chunks_text(cids: List[str]) -> np.ndarray:
texts = [f"passage: {(_meta.get(cid) or {}).get('text','')}" for cid in cids]
return get_emb_model().encode(texts, convert_to_numpy=True, normalize_embeddings=True)
def select_diverse_mmr(cands: List[Tuple[str, float]], qvec: np.ndarray, top_k: int = 6, mmr_lambda: float = 0.5) -> List[Tuple[str, float]]:
if not cands:
return []
cids = [cid for cid, _ in cands]
cvecs = _encode_chunks_text(cids)
sim_to_q = (cvecs @ qvec.T).reshape(-1)
selected, remaining = [], set(range(len(cids)))
while len(selected) < min(top_k, len(cids)):
if not selected:
i = int(np.argmax(sim_to_q))
selected.append(i)
remaining.remove(i)
continue
S = cvecs[selected]
sim_to_S = (cvecs[list(remaining)] @ S.T)
max_sim_to_S = sim_to_S.max(axis=1) if sim_to_S.size > 0 else np.zeros((len(remaining),), dtype=np.float32)
sim_q_rem = sim_to_q[list(remaining)]
mmr_scores = mmr_lambda * sim_q_rem - (1.0 - mmr_lambda) * max_sim_to_S
j_rel = int(np.argmax(mmr_scores))
j = list(remaining)[j_rel]
selected.append(j)
remaining.remove(j)
return [(cids[i], float(sim_to_q[i])) for i in selected][:top_k]
def retrieve_diverse(query: str,
top_k: int = 6,
pool_k: int = 40,
per_source_cap: int = 2,
strategy: str = "mmr",
mmr_lambda: float = 0.5) -> List[Tuple[str, float]]:
qvec = _encode_query_vec(query)
cands = retrieve_candidates(qvec, pool_k=pool_k)
if strategy == "mmr":
return select_diverse_mmr(cands, qvec, top_k=top_k, mmr_lambda=mmr_lambda)
return select_diverse_by_source(cands, top_k=top_k, per_source_cap=per_source_cap)
def _format_ctx(hits: List[Tuple[str, float]]) -> str:
if not hits:
return ""
lines = []
for cid, _ in hits:
m = _meta.get(cid)
if not m:
continue
source_clean = m.get("source", "")
text_clean = (m.get("text", "") or "").replace("\n", " ")
lines.append(f"[{cid}] ({source_clean}) " + text_clean)
return "\n".join(lines[:10])
def chat_fn(message, history):
model_name = SINGLE_MODEL_NAME
if _index is None or _index.ntotal == 0:
status = build_corpus_from_docs()
if not (_index and _index.ntotal > 0):
yield f"**Index Status:** {status}\n\nPlease ensure you have a 'docs' folder with PDF/TXT files and try again."
return
hits = retrieve_diverse(
message,
top_k=6,
pool_k=40,
per_source_cap=2,
strategy="mmr",
mmr_lambda=0.5,
)
ctx = _format_ctx(hits) if hits else "(Current index is empty or no matching chunks found)"
sys_blocks = ["You are a research assistant who has an excellent factual understanding of the legal policies, regulations, and compliance of enterprises, governments, and global organizations. You are a research assistant who reads Legal papers and provides factual answers to queries. If you do not know the answer, you should convey that to the user instead of hallucinating. Answers must be based on retrieved content with evidence and source numbers cited. If retrieval is insufficient, please clearly explain the shortcomings. When answering, please cite the numbers, e.g., [3]"]
messages = [{"role": "system", "content": "\n\n".join(sys_blocks)}]
for u, a in history:
messages.append({"role": "user", "content": u})
messages.append({"role": "assistant", "content": a})
messages.append({"role": "user", "content": message})
try:
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=GEN_TEMPERATURE,
top_p=GEN_TOP_P,
max_tokens=GEN_MAX_TOKENS,
stream=True,
)
partial_message = ""
for chunk in response:
if hasattr(chunk.choices[0], "delta") and chunk.choices[0].delta.content is not None:
partial_message += chunk.choices[0].delta.content
yield partial_message
elif hasattr(chunk.choices[0], "message") and chunk.choices[0].message.content is not None:
partial_message += chunk.choices[0].message.content
yield partial_message
except Exception as e:
yield f"[Exception] {repr(e)}"
with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as legalprodigy:
gr.Markdown("")
with gr.Row():
query_box = gr.Textbox(
placeholder="Try: Explain Arbiration Process",
scale=5
)
send_btn = gr.Button("Send", scale=1)
with gr.Row():
chatbot = gr.Chatbot(label="LegalProdigy")
state = gr.State([])
def chat_wrapper(user_message, history):
history = history or []
gen = chat_fn(user_message, history)
result = ""
for chunk in gen:
result = chunk
history.append((user_message, result))
return history, history
send_btn.click(
chat_wrapper,
inputs=[query_box, state],
outputs=[chatbot, state]
)
try:
_load_if_any()
except Exception:
pass
if __name__ == "__main__":
legalprodigy.launch()