|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from einops import rearrange, repeat |
|
|
|
|
|
|
|
|
from .blocks import EfficientUpdateFormer, CorrBlock |
|
|
from .utils import sample_features4d, get_2d_embedding, get_2d_sincos_pos_embed |
|
|
from .modules import Mlp |
|
|
|
|
|
|
|
|
class BaseTrackerPredictor(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
stride=1, |
|
|
corr_levels=5, |
|
|
corr_radius=4, |
|
|
latent_dim=128, |
|
|
hidden_size=384, |
|
|
use_spaceatt=True, |
|
|
depth=6, |
|
|
max_scale=518, |
|
|
predict_conf=True, |
|
|
): |
|
|
super(BaseTrackerPredictor, self).__init__() |
|
|
""" |
|
|
The base template to create a track predictor |
|
|
|
|
|
Modified from https://github.com/facebookresearch/co-tracker/ |
|
|
and https://github.com/facebookresearch/vggsfm |
|
|
""" |
|
|
|
|
|
self.stride = stride |
|
|
self.latent_dim = latent_dim |
|
|
self.corr_levels = corr_levels |
|
|
self.corr_radius = corr_radius |
|
|
self.hidden_size = hidden_size |
|
|
self.max_scale = max_scale |
|
|
self.predict_conf = predict_conf |
|
|
|
|
|
self.flows_emb_dim = latent_dim // 2 |
|
|
|
|
|
self.corr_mlp = Mlp( |
|
|
in_features=self.corr_levels * (self.corr_radius * 2 + 1) ** 2, |
|
|
hidden_features=self.hidden_size, |
|
|
out_features=self.latent_dim, |
|
|
) |
|
|
|
|
|
self.transformer_dim = self.latent_dim + self.latent_dim + self.latent_dim + 4 |
|
|
|
|
|
self.query_ref_token = nn.Parameter(torch.randn(1, 2, self.transformer_dim)) |
|
|
|
|
|
space_depth = depth if use_spaceatt else 0 |
|
|
time_depth = depth |
|
|
|
|
|
self.updateformer = EfficientUpdateFormer( |
|
|
space_depth=space_depth, |
|
|
time_depth=time_depth, |
|
|
input_dim=self.transformer_dim, |
|
|
hidden_size=self.hidden_size, |
|
|
output_dim=self.latent_dim + 2, |
|
|
mlp_ratio=4.0, |
|
|
add_space_attn=use_spaceatt, |
|
|
) |
|
|
|
|
|
self.fmap_norm = nn.LayerNorm(self.latent_dim) |
|
|
self.ffeat_norm = nn.GroupNorm(1, self.latent_dim) |
|
|
|
|
|
|
|
|
self.ffeat_updater = nn.Sequential(nn.Linear(self.latent_dim, self.latent_dim), nn.GELU()) |
|
|
|
|
|
self.vis_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) |
|
|
|
|
|
if predict_conf: |
|
|
self.conf_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) |
|
|
|
|
|
def forward(self, query_points, fmaps=None, iters=6, return_feat=False, down_ratio=1, apply_sigmoid=True): |
|
|
""" |
|
|
query_points: B x N x 2, the number of batches, tracks, and xy |
|
|
fmaps: B x S x C x HH x WW, the number of batches, frames, and feature dimension. |
|
|
note HH and WW is the size of feature maps instead of original images |
|
|
""" |
|
|
B, N, D = query_points.shape |
|
|
B, S, C, HH, WW = fmaps.shape |
|
|
|
|
|
assert D == 2, "Input points must be 2D coordinates" |
|
|
|
|
|
|
|
|
fmaps = self.fmap_norm(fmaps.permute(0, 1, 3, 4, 2)) |
|
|
fmaps = fmaps.permute(0, 1, 4, 2, 3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if down_ratio > 1: |
|
|
query_points = query_points / float(down_ratio) |
|
|
|
|
|
query_points = query_points / float(self.stride) |
|
|
|
|
|
|
|
|
|
|
|
coords = query_points.clone().reshape(B, 1, N, 2).repeat(1, S, 1, 1) |
|
|
|
|
|
|
|
|
query_track_feat = sample_features4d(fmaps[:, 0], coords[:, 0]) |
|
|
|
|
|
|
|
|
track_feats = query_track_feat.unsqueeze(1).repeat(1, S, 1, 1) |
|
|
|
|
|
coords_backup = coords.clone() |
|
|
|
|
|
fcorr_fn = CorrBlock(fmaps, num_levels=self.corr_levels, radius=self.corr_radius) |
|
|
|
|
|
coord_preds = [] |
|
|
|
|
|
|
|
|
for _ in range(iters): |
|
|
|
|
|
|
|
|
coords = coords.detach() |
|
|
|
|
|
fcorrs = fcorr_fn.corr_sample(track_feats, coords) |
|
|
|
|
|
corr_dim = fcorrs.shape[3] |
|
|
fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, corr_dim) |
|
|
fcorrs_ = self.corr_mlp(fcorrs_) |
|
|
|
|
|
|
|
|
flows = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) |
|
|
|
|
|
flows_emb = get_2d_embedding(flows, self.flows_emb_dim, cat_coords=False) |
|
|
|
|
|
|
|
|
flows_emb = torch.cat([flows_emb, flows / self.max_scale, flows / self.max_scale], dim=-1) |
|
|
|
|
|
track_feats_ = track_feats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) |
|
|
|
|
|
|
|
|
transformer_input = torch.cat([flows_emb, fcorrs_, track_feats_], dim=2) |
|
|
|
|
|
|
|
|
|
|
|
pos_embed = get_2d_sincos_pos_embed(self.transformer_dim, grid_size=(HH, WW)).to(query_points.device) |
|
|
sampled_pos_emb = sample_features4d(pos_embed.expand(B, -1, -1, -1), coords[:, 0]) |
|
|
|
|
|
sampled_pos_emb = rearrange(sampled_pos_emb, "b n c -> (b n) c").unsqueeze(1) |
|
|
|
|
|
x = transformer_input + sampled_pos_emb |
|
|
|
|
|
|
|
|
query_ref_token = torch.cat( |
|
|
[self.query_ref_token[:, 0:1], self.query_ref_token[:, 1:2].expand(-1, S - 1, -1)], dim=1 |
|
|
) |
|
|
x = x + query_ref_token.to(x.device).to(x.dtype) |
|
|
|
|
|
|
|
|
x = rearrange(x, "(b n) s d -> b n s d", b=B) |
|
|
|
|
|
|
|
|
delta, _ = self.updateformer(x) |
|
|
|
|
|
|
|
|
delta = rearrange(delta, " b n s d -> (b n) s d", b=B) |
|
|
delta_coords_ = delta[:, :, :2] |
|
|
delta_feats_ = delta[:, :, 2:] |
|
|
|
|
|
track_feats_ = track_feats_.reshape(B * N * S, self.latent_dim) |
|
|
delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) |
|
|
|
|
|
|
|
|
track_feats_ = self.ffeat_updater(self.ffeat_norm(delta_feats_)) + track_feats_ |
|
|
|
|
|
track_feats = track_feats_.reshape(B, N, S, self.latent_dim).permute(0, 2, 1, 3) |
|
|
|
|
|
|
|
|
coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) |
|
|
|
|
|
|
|
|
|
|
|
coords[:, 0] = coords_backup[:, 0] |
|
|
|
|
|
|
|
|
if down_ratio > 1: |
|
|
coord_preds.append(coords * self.stride * down_ratio) |
|
|
else: |
|
|
coord_preds.append(coords * self.stride) |
|
|
|
|
|
|
|
|
vis_e = self.vis_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) |
|
|
if apply_sigmoid: |
|
|
vis_e = torch.sigmoid(vis_e) |
|
|
|
|
|
if self.predict_conf: |
|
|
conf_e = self.conf_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) |
|
|
if apply_sigmoid: |
|
|
conf_e = torch.sigmoid(conf_e) |
|
|
else: |
|
|
conf_e = None |
|
|
|
|
|
if return_feat: |
|
|
return coord_preds, vis_e, track_feats, query_track_feat, conf_e |
|
|
else: |
|
|
return coord_preds, vis_e, conf_e |
|
|
|