Spaces:
Running
Running
import os | |
from abc import ABC, abstractmethod | |
from typing import List | |
import cv2 | |
import numpy as np | |
from retinaface import RetinaFace | |
from retinaface.model import retinaface_model | |
from .box_utils import convert_to_square | |
class FaceDetector(ABC): | |
def __init__(self, target_size): | |
self.target_size = target_size | |
def detect_crops(self, img, *args, **kwargs) -> List[np.ndarray]: | |
""" | |
Img is a numpy ndarray in range [0..255], uint8 dtype, RGB type | |
Returns ndarray with [x1, y1, x2, y2] in row | |
""" | |
pass | |
def postprocess_crops(self, crops, *args, **kwargs) -> List[np.ndarray]: | |
return crops | |
def sort_faces(self, crops): | |
sorted_faces = sorted(crops, key=lambda x: -(x[2] - x[0]) * (x[3] - x[1])) | |
sorted_faces = np.stack(sorted_faces, axis=0) | |
return sorted_faces | |
def fix_range_crops(self, img, crops): | |
H, W, _ = img.shape | |
final_crops = [] | |
for crop in crops: | |
x1, y1, x2, y2 = crop | |
x1 = max(min(round(x1), W), 0) | |
y1 = max(min(round(y1), H), 0) | |
x2 = max(min(round(x2), W), 0) | |
y2 = max(min(round(y2), H), 0) | |
new_crop = [x1, y1, x2, y2] | |
final_crops.append(new_crop) | |
final_crops = np.array(final_crops, dtype=np.int) | |
return final_crops | |
def crop_faces(self, img, crops) -> List[np.ndarray]: | |
cropped_faces = [] | |
for crop in crops: | |
x1, y1, x2, y2 = crop | |
face_crop = img[y1:y2, x1:x2, :] | |
cropped_faces.append(face_crop) | |
return cropped_faces | |
def unify_and_merge(self, cropped_images): | |
return cropped_images | |
def __call__(self, img): | |
return self.detect_faces(img) | |
def detect_faces(self, img): | |
crops = self.detect_crops(img) | |
if crops is None or len(crops) == 0: | |
return [], [] | |
crops = self.sort_faces(crops) | |
updated_crops = self.postprocess_crops(crops) | |
updated_crops = self.fix_range_crops(img, updated_crops) | |
cropped_faces = self.crop_faces(img, updated_crops) | |
unified_faces = self.unify_and_merge(cropped_faces) | |
return unified_faces, updated_crops | |
class StatRetinaFaceDetector(FaceDetector): | |
def __init__(self, target_size=None): | |
super().__init__(target_size) | |
self.model = retinaface_model.build_model() | |
#self.relative_offsets = [0.3258, 0.5225, 0.3258, 0.1290] | |
self.relative_offsets = [0.3619, 0.5830, 0.3619, 0.1909] | |
def postprocess_crops(self, crops, *args, **kwargs) -> np.ndarray: | |
final_crops = [] | |
x1_offset, y1_offset, x2_offset, y2_offset = self.relative_offsets | |
for crop in crops: | |
x1, y1, x2, y2 = crop | |
w, h = x2 - x1, y2 - y1 | |
x1 -= w * x1_offset | |
y1 -= h * y1_offset | |
x2 += w * x2_offset | |
y2 += h * y2_offset | |
crop = np.array([x1, y1, x2, y2], dtype=crop.dtype) | |
crop = convert_to_square(crop) | |
final_crops.append(crop) | |
final_crops = np.stack(final_crops, axis=0) | |
return final_crops | |
def detect_crops(self, img, *args, **kwargs): | |
faces = RetinaFace.detect_faces(img, model=self.model) | |
crops = [] | |
if isinstance(faces, tuple): | |
faces = {} | |
for name, face in faces.items(): | |
x1, y1, x2, y2 = face['facial_area'] | |
crop = np.array([x1, y1, x2, y2]) | |
crops.append(crop) | |
if len(crops) > 0: | |
crops = np.stack(crops, axis=0) | |
return crops | |
def unify_and_merge(self, cropped_images): | |
if self.target_size is None: | |
return cropped_images | |
else: | |
resized_images = [] | |
for cropped_image in cropped_images: | |
resized_image = cv2.resize(cropped_image, (self.target_size, self.target_size), | |
interpolation=cv2.INTER_LINEAR) | |
resized_images.append(resized_image) | |
resized_images = np.stack(resized_images, axis=0) | |
return resized_images | |