Pledge_Tracker / system /process_time.py
yulongchen's picture
Add system
ed95e7f
raw
history blame
8.37 kB
import json
import datetime
import re
import pandas as pd
import os, argparse
import random
import csv
from openai import OpenAI
from huggingface_hub import hf_hub_download
import json
import os
def gpt_4o_useful(input):
client=OpenAI(api_key=os.environ.get("OAI"))
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": input
}
]
}
],
response_format={"type": "text"},
temperature=0.0000000001,
max_tokens=4096,
top_p=0,
frequency_penalty=0,
presence_penalty=0,
logprobs=True
)
text = response.choices[0].message.content
if response.choices[0].logprobs and response.choices[0].logprobs.content:
first_token_logprob = response.choices[0].logprobs.content[0]
token = first_token_logprob.token
logprob = first_token_logprob.logprob
else:
token = None
logprob = None
return text, token, logprob
def get_ICL(data, top_k=None):
ICL =""
if top_k == None:
data = data
else:
# print(data)
data = data[:top_k]
for line in data:
# line = json.loads(line)
pledge = line["pledge"]
event = line["event_description"]
time = line["event_date"]
input=f"Pledge: {pledge}\nEvent Summary: {event} (Event Date: {time})\nIs this event summary useful to track the fulfilment of this pledge"
input = input.strip()
output = line["label"].strip()
ICL = f"{ICL}Input: {input}\nOutput: {output}\n\n"
return ICL
def load_json(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def gpt_eval(test_instance, train_data, instruction, suggestion_meta, ICL_id=None):
if suggestion_meta:
# print(ICL_id)
train_data = [line for line in train_data if str(line.get("pledge_id")) == str(ICL_id)]
else:
random.seed(42)
random.shuffle(train_data)
ICL = get_ICL(train_data, top_k=50)
# print(ICL)
input = f"{instruction}\nBelow are examples:\n\n{ICL}Now, please assign a label for the below instance.\nInput: {test_instance}\nOutput:"
try:
text, tokens, logprobs = gpt_4o_useful(input)
except Exception as e:
print(e)
tokens = None
logprobs = None
return tokens, logprobs
def extract_columns_to_dict(file_path, delimiter='\t'):
data_dict = {}
with open(file_path, mode='r', encoding='utf-8') as file:
reader = csv.reader(file, delimiter=delimiter)
for row in reader:
if len(row) >= 4:
key = row[2]
value = row[3]
data_dict[key] = value
return data_dict
import datetime
import re
def parse_date(date_str):
if not date_str:
return None, date_str
date_str = date_str.strip()
# Case 1: YYYY-MM-DD
try:
return datetime.datetime.strptime(date_str, "%Y-%m-%d"), date_str
except ValueError:
pass
# Case 2: Relative date
match = re.search(r'(.*) \(relative to (\d{4}-\d{2}-\d{2})\)', date_str)
if match:
reference = datetime.datetime.strptime(match.group(2), "%Y-%m-%d")
relative_term = match.group(1).strip().lower()
if relative_term == "last month":
target_date = reference - datetime.timedelta(days=30)
elif relative_term == "yesterday":
target_date = reference - datetime.timedelta(days=1)
elif relative_term == "last week":
target_date = reference - datetime.timedelta(days=7)
elif relative_term == "this week":
target_date = reference
else:
return None, date_str
return target_date, date_str # ✅ 返回 datetime 对象,不是字符串
# Case 3: YYYY
match = re.fullmatch(r'(\d{4})', date_str)
if match:
year = int(match.group(1))
return datetime.datetime(year, 1, 1), date_str
# Case 4: Month YYYY
match = re.fullmatch(r'(\w+) (\d{4})', date_str)
if match:
try:
target_date = datetime.datetime.strptime(date_str, "%B %Y")
return target_date, date_str
except ValueError:
return None, date_str
# Case 5: YYYY-QX
match = re.fullmatch(r'(\d{4})-Q(\d)', date_str)
if match:
year, quarter = int(match.group(1)), int(match.group(2))
month = (quarter - 1) * 3 + 1
return datetime.datetime(year, month, 1), date_str
# Case 6: YYYY Season
match = re.fullmatch(r'(\d{4}) (Spring|Summer|Autumn|Fall|Winter)', date_str, re.IGNORECASE)
if match:
year = int(match.group(1))
season_map = {"spring": 3, "summer": 6, "autumn": 9, "fall": 9, "winter": 12}
month = season_map[match.group(2).lower()]
return datetime.datetime(year, month, 1), date_str
return None, date_str
def extract_and_sort_events(data_dir, pledge_date, pledge_author, claim, suggestion_meta):
events = []
# url_path = os.path.join(data_dir, "augmented_search_results.tsv")
# url_query_dict = extract_columns_to_dict(file_path=url_path, delimiter='\t')
pledge = claim.strip()
file_path = os.path.join(data_dir, "gpt4_event_extraction", "gpt4o_results_0_claim.json")
gpt4_results_json = load_json(file_path)
# print(gpt4_results_json)
train_file_path = hf_hub_download(
repo_id="PledgeTracker/demo_feedback",
filename="train_useful.json",
repo_type="dataset",
token=os.environ["HF_TOKEN"]
)
with open(train_file_path, "r", encoding="utf-8") as f:
train_data = json.load(f)
# print(train_data[0])
instruction_path = hf_hub_download(
repo_id="PledgeTracker/demo_feedback",
filename="instruction.txt",
repo_type="dataset",
token=os.environ["HF_TOKEN"]
)
instruction = open(instruction_path, "r").read()
map_file_path = hf_hub_download(
repo_id="PledgeTracker/demo_feedback",
filename="mapping.txt",
repo_type="dataset",
token=os.environ["HF_TOKEN"]
)
mapping_f = open(map_file_path, "r").readlines()
mapping = {}
for map_id, line in enumerate(mapping_f):
mapping[map_id] = int(line.strip())
ICL_id = None
if suggestion_meta:
try:
idx = int(suggestion_meta["index"])
ICL_id = mapping.get(idx)
print(f"[Suggestion] index: {idx} → pledge_id: {ICL_id}")
except Exception as e:
print(f"[Mapping error]: {e}")
for doc in gpt4_results_json:
mete_date = doc["date"]
for event in doc.get("output", {}).get("events", []):
parsed_date, original_date = parse_date(event["date"])
if parsed_date:
parsed_date_str = parsed_date.strftime("%Y-%m-%d")
if parsed_date_str != mete_date:
event_date_and_pub_date = f"{parsed_date_str} ({mete_date})"
else:
event_date_and_pub_date = parsed_date_str
test_instance = f"Pledge: {pledge} (Speaker: {pledge_author}; Pledge Date: {pledge_date})\nEvent Summary: {event['event']} (Event Date: {original_date})\nIs this event summary useful to track the fulfilment of this pledge"
label, score = gpt_eval(test_instance, train_data, instruction, suggestion_meta, ICL_id=ICL_id)
URL = doc["url"]
events.append({
"date": original_date,
"event date (publication date if different)": event_date_and_pub_date,
"event": event["event"],
"url": URL,
"label": label,
"confident": score,
})
events.sort(key=lambda x: parse_date(x["date"])[0], reverse=True)
return events