Reversed-Zotero / app.py
Pclanglais's picture
Update app.py
cecc282 verified
raw
history blame
8.63 kB
import spaces
import transformers
import re
from transformers import AutoTokenizer, pipeline
import torch
import html
import gradio as gr
import tempfile
import os
import pandas as pd
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models
editorial_model = "LLMDH/Estienne"
bibliography_model = "PleIAs/Bibliography-Formatter"
bibliography_style = "PleIAs/Bibliography-Classifier"
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
editorial_classifier = pipeline(
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
bibliography_classifier = pipeline(
"token-classification", model=bibliography_model, aggregation_strategy="simple", device=device
)
style_classifier = pipeline("text-classification", model=bibliography_style, tokenizer=tokenizer, device=device)
# Helper functions
def preprocess_text(text):
text = re.sub(r'<[^>]+>', '', text)
text = re.sub(r'\n', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def split_text(text, max_tokens=500):
parts = text.split("\n")
chunks = []
current_chunk = ""
for part in parts:
temp_chunk = current_chunk + "\n" + part if current_chunk else part
num_tokens = len(tokenizer.tokenize(temp_chunk))
if num_tokens <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = part
if current_chunk:
chunks.append(current_chunk)
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
long_text = chunks[0]
chunks = []
while len(tokenizer.tokenize(long_text)) > max_tokens:
split_point = len(long_text) // 2
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
split_point += 1
if split_point >= len(long_text):
split_point = len(long_text) - 1
chunks.append(long_text[:split_point].strip())
long_text = long_text[split_point:].strip()
if long_text:
chunks.append(long_text)
return chunks
def disambiguate_bibtex_ids(bibtex_entries):
id_count = {}
disambiguated_entries = []
for entry in bibtex_entries:
# Extract the current ID
match = re.search(r'@\w+{(\w+),', entry)
if not match:
disambiguated_entries.append(entry)
continue
original_id = match.group(1)
# Check if this ID has been seen before
if original_id in id_count:
id_count[original_id] += 1
new_id = f"{original_id}{chr(96 + id_count[original_id])}" # 'a', 'b', 'c', etc.
new_entry = re.sub(r'(@\w+{)(\w+)(,)', f'\\1{new_id}\\3', entry, 1)
disambiguated_entries.append(new_entry)
else:
id_count[original_id] = 0
disambiguated_entries.append(entry)
return disambiguated_entries
def remove_punctuation(text):
return re.sub(r'[^\w\s]', '', text)
def extract_year(text):
year_match = re.search(r'\b(\d{4})\b', text)
return year_match.group(1) if year_match else None
def create_bibtex_entry(data):
if 'journal' in data:
entry_type = 'article'
elif 'booktitle' in data:
entry_type = 'inproceedings'
else:
entry_type = 'book'
none_content = data.pop('none', '')
year = extract_year(none_content)
if year and 'year' not in data:
data['year'] = year
if "year" in data:
match_year = re.search(r'(\d{4})', data['year'])
if match_year:
data['year'] = match_year.group(1)
year = data['year']
else:
data.pop('year', '')
#Pages conformity.
if 'pages' in data:
match = re.search(r'(\d+(-\d+)?)', data['pages'])
if match:
data['pages'] = match.group(1)
else:
data.pop('pages', '')
author_words = data.get('author', '').split()
first_author = author_words[0] if author_words else 'unknown'
bibtex_id = f"{first_author}{year}" if year else first_author
bibtex_id = remove_punctuation(bibtex_id.lower())
bibtex = f"@{entry_type}{{{bibtex_id},\n"
for key, value in data.items():
if value.strip():
if key in ['volume', 'year']:
value = remove_punctuation(value)
if key == 'pages':
value = value.replace('p. ', '')
if key != "separator":
bibtex += f" {key.lower()} = {{{value.strip()}}},\n"
bibtex = bibtex.rstrip(',\n') + "\n}"
return bibtex
def save_bibtex(bibtex_content):
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.bib') as temp_file:
temp_file.write(bibtex_content)
return temp_file.name
class CombinedProcessor:
@spaces.GPU(duration=120)
def process(self, user_message):
#Precaution to reinforce bibliography detection.
editorial_text = "Bibliography\n" + user_message
#Our fix for the lack of newline in deberta
editorial_text = re.sub("\n", " ¶ ", editorial_text)
print(editorial_text)
num_tokens = len(tokenizer.tokenize(editorial_text))
batch_prompts = split_text(editorial_text, max_tokens=500) if num_tokens > 500 else [editorial_text]
editorial_out = editorial_classifier(batch_prompts)
editorial_df = pd.concat([pd.DataFrame(classification) for classification in editorial_out])
# Filter out only bibliography entries
bibliography_entries = editorial_df[editorial_df['entity_group'] == 'bibliography']['word'].tolist()
bibtex_entries = []
list_style = []
for entry in bibliography_entries:
print(entry)
entry = re.sub(r'- ?[\n¶] ?', r'', entry)
entry = re.sub(r' ?[\n¶] ?', r' ', entry)
style = pd.DataFrame(style_classifier(entry, truncation=True, padding=True, top_k=1))
list_style.append(style)
entry = re.sub(r'\s*([;:,\.])\s*', r' \1 ', entry)
#print(entry)
bib_out = bibliography_classifier(entry)
bib_df = pd.DataFrame(bib_out)
bibtex_data = {}
current_entity = None
for _, row in bib_df.iterrows():
entity_group = row['entity_group']
word = row['word']
if entity_group != 'None':
if entity_group in bibtex_data:
bibtex_data[entity_group] += ' ' + word
else:
bibtex_data[entity_group] = word
current_entity = entity_group
else:
if current_entity:
bibtex_data[current_entity] += ' ' + word
else:
bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
bibtex_entry = create_bibtex_entry(bibtex_data)
bibtex_entries.append(bibtex_entry)
list_style = pd.concat(list_style)
list_style = list_style.groupby('label')['score'].mean().sort_values(ascending=False).reset_index()
top_style = list_style.iloc[0]['label']
top_style_score = list_style.iloc[0]['score']
# Create the style information string
style_info = f"Estimated bibliographic style: {top_style} (Mean score: {top_style_score:.6f})"
# Join BibTeX entries
bibtex_content = "\n\n".join(bibtex_entries)
return style_info, bibtex_content
# Create the processor instance
processor = CombinedProcessor()
# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.HTML("""<h1 style="text-align:center">Reversed Zotero</h1>""")
text_input = gr.Textbox(label="Your unstructured bibliography", type="text", lines=10)
text_button = gr.Button("Process Text")
style_output = gr.Textbox(label="Bibliographic Style", lines=2)
bibtex_output = gr.Textbox(label="BibTeX Entries", lines=15)
export_button = gr.Button("Export BibTeX")
export_output = gr.File(label="Exported BibTeX File")
text_button.click(processor.process, inputs=text_input, outputs=[style_output, bibtex_output])
export_button.click(save_bibtex, inputs=[bibtex_output], outputs=[export_output])
if __name__ == "__main__":
demo.queue().launch()