Spaces:
Build error
Build error
PeteBleackley
commited on
Commit
•
cce945c
1
Parent(s):
3340c72
Created HuggingFace Space
Browse files- app.py +15 -0
- qarac/corpora/CombinedCorpus.py +4 -3
- scripts.py +2 -0
app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Wed Oct 11 10:26:15 2023
|
5 |
+
|
6 |
+
@author: peter
|
7 |
+
"""
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
def greet(name):
|
12 |
+
return "Hello " + name + "!!"
|
13 |
+
|
14 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
15 |
+
iface.launch()
|
qarac/corpora/CombinedCorpus.py
CHANGED
@@ -145,11 +145,11 @@ class CombinedCorpus(torch.utils.data.IterableDataset):
|
|
145 |
|
146 |
X={key:self.pad(value,self.max_lengths[key])
|
147 |
for (key,value) in X.items()}
|
148 |
-
Y={key:torch.tensor(value).float() if key=='consistency' else self.pad(value,
|
149 |
self.max_lengths[key],
|
150 |
False)
|
151 |
for (key,value) in Y.items()}
|
152 |
-
Y['question_answering'] = torch.zeros((n,768))
|
153 |
return (X,
|
154 |
tuple([Y[key]
|
155 |
for key in ('encode_decode',
|
@@ -175,7 +175,8 @@ class CombinedCorpus(torch.utils.data.IterableDataset):
|
|
175 |
for sample in batch:
|
176 |
sample.pad(maxlen,pad_id=self.pad_token)
|
177 |
input_ids = torch.tensor([sample.ids
|
178 |
-
for sample in batch]
|
|
|
179 |
result = input_ids
|
180 |
if inputs:
|
181 |
attention_mask = torch.not_equal(input_ids,
|
|
|
145 |
|
146 |
X={key:self.pad(value,self.max_lengths[key])
|
147 |
for (key,value) in X.items()}
|
148 |
+
Y={key:torch.tensor(value,device='cuda').float() if key=='consistency' else self.pad(value,
|
149 |
self.max_lengths[key],
|
150 |
False)
|
151 |
for (key,value) in Y.items()}
|
152 |
+
Y['question_answering'] = torch.zeros((n,768),device='cuda')
|
153 |
return (X,
|
154 |
tuple([Y[key]
|
155 |
for key in ('encode_decode',
|
|
|
175 |
for sample in batch:
|
176 |
sample.pad(maxlen,pad_id=self.pad_token)
|
177 |
input_ids = torch.tensor([sample.ids
|
178 |
+
for sample in batch],
|
179 |
+
device='cuda')
|
180 |
result = input_ids
|
181 |
if inputs:
|
182 |
attention_mask = torch.not_equal(input_ids,
|
scripts.py
CHANGED
@@ -135,7 +135,9 @@ def train_models(path):
|
|
135 |
tokenizer = tokenizers.Tokenizer.from_pretrained('roberta-base')
|
136 |
trainer = qarac.models.QaracTrainerModel.QaracTrainerModel('roberta-base',
|
137 |
tokenizer)
|
|
|
138 |
loss_fn = CombinedLoss()
|
|
|
139 |
optimizer = torch.optim.NAdam(trainer.parameters(),lr=5.0e-5)
|
140 |
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.9)
|
141 |
training_data = qarac.corpora.CombinedCorpus.CombinedCorpus(tokenizer,
|
|
|
135 |
tokenizer = tokenizers.Tokenizer.from_pretrained('roberta-base')
|
136 |
trainer = qarac.models.QaracTrainerModel.QaracTrainerModel('roberta-base',
|
137 |
tokenizer)
|
138 |
+
trainer.cuda()
|
139 |
loss_fn = CombinedLoss()
|
140 |
+
loss_fn.cuda()
|
141 |
optimizer = torch.optim.NAdam(trainer.parameters(),lr=5.0e-5)
|
142 |
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.9)
|
143 |
training_data = qarac.corpora.CombinedCorpus.CombinedCorpus(tokenizer,
|