Spaces:
Sleeping
Sleeping
1littlecoder
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,49 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
import json
|
4 |
-
import os
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
7 |
API_KEY = os.getenv('PLAY_API_KEY')
|
8 |
USER_ID = os.getenv('PLAY_USER_ID')
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def text_to_speech(text):
|
11 |
url = "https://api.play.ht/api/v2/tts/stream"
|
12 |
-
|
13 |
-
# Customize the payload based on your Play.ht account setup
|
14 |
payload = {
|
15 |
-
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
|
16 |
"output_format": "mp3",
|
17 |
-
"text": text
|
18 |
}
|
19 |
headers = {
|
20 |
"accept": "audio/mpeg",
|
@@ -24,10 +53,7 @@ def text_to_speech(text):
|
|
24 |
}
|
25 |
|
26 |
response = requests.post(url, json=payload, headers=headers)
|
27 |
-
|
28 |
-
# Check if the response was successful
|
29 |
if response.status_code == 200:
|
30 |
-
# Save the audio content to a file
|
31 |
audio_path = "output_audio.mp3"
|
32 |
with open(audio_path, "wb") as audio_file:
|
33 |
audio_file.write(response.content)
|
@@ -35,13 +61,25 @@ def text_to_speech(text):
|
|
35 |
else:
|
36 |
return f"Error: {response.status_code} - {response.text}"
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
import google.generativeai as genai
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
|
|
5 |
|
6 |
+
# Configure Google Gemini API
|
7 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
8 |
+
|
9 |
+
# Play.ht API keys
|
10 |
API_KEY = os.getenv('PLAY_API_KEY')
|
11 |
USER_ID = os.getenv('PLAY_USER_ID')
|
12 |
|
13 |
+
# Function to upload image to Gemini and get roasted text
|
14 |
+
def upload_to_gemini(path, mime_type="image/jpeg"):
|
15 |
+
file = genai.upload_file(path, mime_type=mime_type)
|
16 |
+
return file
|
17 |
+
|
18 |
+
def generate_roast(image_path):
|
19 |
+
# Upload the image to Gemini and get the text
|
20 |
+
uploaded_file = upload_to_gemini(image_path)
|
21 |
+
generation_config = {
|
22 |
+
"temperature": 1,
|
23 |
+
"top_p": 0.95,
|
24 |
+
"top_k": 40,
|
25 |
+
"max_output_tokens": 8192,
|
26 |
+
"response_mime_type": "text/plain",
|
27 |
+
}
|
28 |
+
model = genai.GenerativeModel(
|
29 |
+
model_name="gemini-1.5-flash-002",
|
30 |
+
generation_config=generation_config,
|
31 |
+
system_instruction="You are a professional satirist and fashion expert. You will be given a profile picture. Your duty is to roast whatever is given to you in the funniest way possible!",
|
32 |
+
)
|
33 |
+
|
34 |
+
chat_session = model.start_chat(
|
35 |
+
history=[{"role": "user", "parts": [uploaded_file]}]
|
36 |
+
)
|
37 |
+
response = chat_session.send_message("Roast this image!")
|
38 |
+
return response.text
|
39 |
+
|
40 |
+
# Function to convert text to speech with Play.ht
|
41 |
def text_to_speech(text):
|
42 |
url = "https://api.play.ht/api/v2/tts/stream"
|
|
|
|
|
43 |
payload = {
|
44 |
+
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
|
45 |
"output_format": "mp3",
|
46 |
+
"text": text,
|
47 |
}
|
48 |
headers = {
|
49 |
"accept": "audio/mpeg",
|
|
|
53 |
}
|
54 |
|
55 |
response = requests.post(url, json=payload, headers=headers)
|
|
|
|
|
56 |
if response.status_code == 200:
|
|
|
57 |
audio_path = "output_audio.mp3"
|
58 |
with open(audio_path, "wb") as audio_file:
|
59 |
audio_file.write(response.content)
|
|
|
61 |
else:
|
62 |
return f"Error: {response.status_code} - {response.text}"
|
63 |
|
64 |
+
# Gradio Interface
|
65 |
+
with gr.Blocks(theme={"primary_hue": "#b4fd83"}) as demo:
|
66 |
+
gr.Markdown("# Image to Text-to-Speech Roasting App")
|
67 |
+
gr.Markdown("Upload an image, and the AI will roast it and convert the roast to audio.")
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
image_input = gr.Image(type="filepath", label="Upload Image")
|
72 |
+
with gr.Column():
|
73 |
+
output_text = gr.Textbox(label="Roast Text")
|
74 |
+
audio_output = gr.Audio(label="Roast Audio")
|
75 |
+
|
76 |
+
def process_image(image):
|
77 |
+
roast_text = generate_roast(image)
|
78 |
+
audio_path = text_to_speech(roast_text)
|
79 |
+
return roast_text, audio_path
|
80 |
+
|
81 |
+
submit_button = gr.Button("Generate Roast")
|
82 |
+
submit_button.click(process_image, inputs=image_input, outputs=[output_text, audio_output])
|
83 |
|
84 |
+
# Launch the app
|
85 |
+
demo.launch(debug=True)
|