Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import random
|
5 |
import time
|
6 |
import json
|
7 |
import base64
|
8 |
import os
|
9 |
from io import BytesIO
|
10 |
-
import math
|
11 |
import PIL
|
12 |
-
from PIL import Image
|
13 |
from PIL.ExifTags import TAGS
|
14 |
import html
|
15 |
import re
|
16 |
from threading import Thread
|
17 |
|
|
|
|
|
|
|
18 |
class Prodia:
|
19 |
def __init__(self, api_key, base=None):
|
20 |
self.base = base or "https://api.prodia.com/v1"
|
@@ -34,6 +34,10 @@ class Prodia:
|
|
34 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
35 |
return response.json()
|
36 |
|
|
|
|
|
|
|
|
|
37 |
def get_job(self, job_id):
|
38 |
response = self._get(f"{self.base}/job/{job_id}")
|
39 |
return response.json()
|
@@ -42,7 +46,7 @@ class Prodia:
|
|
42 |
job_result = job
|
43 |
|
44 |
while job_result['status'] not in ['succeeded', 'failed']:
|
45 |
-
time.sleep(0.
|
46 |
job_result = self.get_job(job['job'])
|
47 |
|
48 |
return job_result
|
@@ -76,15 +80,13 @@ class Prodia:
|
|
76 |
return response
|
77 |
|
78 |
|
79 |
-
def image_to_base64(
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
buffered = BytesIO()
|
84 |
-
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
85 |
|
86 |
-
|
87 |
-
|
88 |
|
89 |
return img_str.decode('utf-8') # Convert bytes to string
|
90 |
|
@@ -98,43 +100,6 @@ def remove_id_and_ext(text):
|
|
98 |
text = text[:-4]
|
99 |
return text
|
100 |
|
101 |
-
def place_lora(current_prompt, lora_name):
|
102 |
-
pattern = r"<lora:" + lora_name + r":.*?>"
|
103 |
-
|
104 |
-
if re.search(pattern, current_prompt):
|
105 |
-
return re.sub(pattern, "", current_prompt)
|
106 |
-
else:
|
107 |
-
return current_prompt + "<lora:" + lora_name + ":1>"
|
108 |
-
|
109 |
-
def create_grid(image_urls):
|
110 |
-
# Download first image to get size
|
111 |
-
response = requests.get(image_urls[0])
|
112 |
-
img_data = response.content
|
113 |
-
img = Image.open(BytesIO(img_data))
|
114 |
-
w, h = img.size
|
115 |
-
|
116 |
-
# Calculate rows and cols
|
117 |
-
num_images = len(image_urls)
|
118 |
-
num_cols = min(num_images, 3)
|
119 |
-
num_rows = math.ceil(num_images / num_cols)
|
120 |
-
|
121 |
-
# Create new rgba image
|
122 |
-
grid_w = num_cols * w
|
123 |
-
grid_h = num_rows * h
|
124 |
-
grid = Image.new('RGBA', (grid_w, grid_h), (0, 0, 0, 0))
|
125 |
-
|
126 |
-
# Download images and paste into grid
|
127 |
-
for index, img_url in enumerate(image_urls):
|
128 |
-
response = requests.get(img_url)
|
129 |
-
img_data = response.content
|
130 |
-
img = Image.open(BytesIO(img_data))
|
131 |
-
|
132 |
-
row = index // num_cols
|
133 |
-
col = index % num_cols
|
134 |
-
grid.paste(img, (col * w, row * h))
|
135 |
-
|
136 |
-
# Save image
|
137 |
-
return grid
|
138 |
|
139 |
def get_data(text):
|
140 |
results = {}
|
@@ -199,9 +164,17 @@ def send_to_txt2img(image):
|
|
199 |
|
200 |
return result
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
204 |
model_list = prodia_client.list_models()
|
|
|
205 |
model_names = {}
|
206 |
|
207 |
for model_name in model_list:
|
@@ -209,10 +182,11 @@ for model_name in model_list:
|
|
209 |
model_names[name_without_ext] = model_name
|
210 |
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
216 |
data = {
|
217 |
"prompt": prompt,
|
218 |
"negative_prompt": negative_prompt,
|
@@ -222,41 +196,79 @@ def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width,
|
|
222 |
"cfg_scale": cfg_scale,
|
223 |
"width": width,
|
224 |
"height": height,
|
225 |
-
"seed": seed
|
226 |
-
"upscale": True
|
227 |
}
|
228 |
|
229 |
total_images = []
|
230 |
-
|
231 |
|
232 |
-
def
|
233 |
-
|
234 |
-
|
|
|
235 |
|
236 |
-
|
|
|
|
|
|
|
237 |
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
-
grid_images.append(job['imageUrl'])
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
|
|
|
|
|
|
|
253 |
|
254 |
for x in range(batch_count):
|
255 |
-
t = Thread(target=
|
256 |
-
|
257 |
t.start()
|
258 |
|
259 |
-
for t in
|
260 |
t.join()
|
261 |
|
262 |
new_images_list = [img['name'] for img in gallery]
|
@@ -264,89 +276,274 @@ def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width,
|
|
264 |
for image in total_images:
|
265 |
new_images_list.insert(0, image)
|
266 |
|
267 |
-
|
|
|
|
|
|
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
css = """
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
}
|
274 |
"""
|
275 |
|
276 |
with gr.Blocks(css=css) as demo:
|
277 |
-
|
278 |
-
|
279 |
-
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]",
|
280 |
-
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models(), container=False)
|
281 |
-
|
282 |
-
with gr.Column(scale=6):
|
283 |
-
gr.Markdown(elem_id="powered-by-prodia",
|
284 |
-
value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br> For more features and faster gen times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide)")
|
285 |
|
286 |
with gr.Tabs() as tabs:
|
287 |
-
with gr.Tab("txt2img", id='t2i'
|
288 |
with gr.Row():
|
289 |
-
with gr.Column(scale=
|
290 |
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
291 |
-
placeholder="Prompt", show_label=False, lines=3
|
292 |
-
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
293 |
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
294 |
-
with gr.Row(
|
295 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
296 |
-
stop_btn = gr.Button("Cancel", elem_id="
|
297 |
|
298 |
with gr.Row():
|
299 |
-
with gr.Column(
|
300 |
with gr.Tab("Generation"):
|
301 |
with gr.Row():
|
302 |
with gr.Column(scale=1):
|
303 |
-
sampler = gr.Dropdown(value="
|
304 |
-
choices=
|
305 |
-
"Euler",
|
306 |
-
"Euler a",
|
307 |
-
"LMS",
|
308 |
-
"Heun",
|
309 |
-
"DPM2",
|
310 |
-
"DPM2 a",
|
311 |
-
"DPM++ 2S a",
|
312 |
-
"DPM++ 2M",
|
313 |
-
"DPM++ SDE",
|
314 |
-
"DPM fast",
|
315 |
-
"DPM adaptive",
|
316 |
-
"LMS Karras",
|
317 |
-
"DPM2 Karras",
|
318 |
-
"DPM2 a Karras",
|
319 |
-
"DPM++ 2S a Karras",
|
320 |
-
"DPM++ 2M Karras",
|
321 |
-
"DPM++ SDE Karras",
|
322 |
-
"DDIM",
|
323 |
-
"PLMS",
|
324 |
-
])
|
325 |
|
326 |
with gr.Column(scale=1):
|
327 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
|
328 |
|
329 |
with gr.Row():
|
330 |
-
with gr.Column(scale=
|
331 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
332 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
333 |
|
334 |
with gr.Column(scale=1):
|
335 |
-
batch_size = gr.Slider(label="Batch Size",
|
336 |
-
batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=
|
337 |
|
338 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
339 |
seed = gr.Number(label="Seed", value=-1)
|
340 |
|
341 |
with gr.Tab("Lora"):
|
342 |
-
loralist = prodia_client.list_loras()
|
343 |
with gr.Row():
|
344 |
-
for lora in
|
345 |
lora_btn = gr.Button(lora, size="sm")
|
346 |
lora_btn.click(place_lora, inputs=[prompt, lora_btn], outputs=prompt)
|
347 |
|
348 |
-
with gr.Column(
|
349 |
-
image_output = gr.Gallery(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
with gr.Tab("PNG Info"):
|
352 |
def plaintext_to_html(text, classname=None):
|
@@ -373,6 +570,7 @@ with gr.Blocks(css=css) as demo:
|
|
373 |
|
374 |
return info
|
375 |
|
|
|
376 |
with gr.Row():
|
377 |
with gr.Column():
|
378 |
image_input = gr.Image(type="pil")
|
@@ -382,16 +580,26 @@ with gr.Blocks(css=css) as demo:
|
|
382 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
383 |
|
384 |
with gr.Tab("Gallery"):
|
385 |
-
gallery_obj = gr.Gallery(height=1000, columns=
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
-
generation_event = text_button.click(flip_text,
|
388 |
-
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_size, batch_count,
|
389 |
-
gallery_obj], outputs=[image_output, gallery_obj])
|
390 |
-
stop_btn.click(fn=None, outputs=None, cancels=[generation_event])
|
391 |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
392 |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input],
|
393 |
-
outputs=[tabs, prompt, negative_prompt, steps, seed,
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
-
demo.queue(concurrency_count=
|
397 |
-
demo.launch()
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import time
|
5 |
import json
|
6 |
import base64
|
7 |
import os
|
8 |
from io import BytesIO
|
|
|
9 |
import PIL
|
|
|
10 |
from PIL.ExifTags import TAGS
|
11 |
import html
|
12 |
import re
|
13 |
from threading import Thread
|
14 |
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
class Prodia:
|
19 |
def __init__(self, api_key, base=None):
|
20 |
self.base = base or "https://api.prodia.com/v1"
|
|
|
34 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
35 |
return response.json()
|
36 |
|
37 |
+
def upscale(self, params):
|
38 |
+
response = self._post(f"{self.base}/upscale", params)
|
39 |
+
return response.json()
|
40 |
+
|
41 |
def get_job(self, job_id):
|
42 |
response = self._get(f"{self.base}/job/{job_id}")
|
43 |
return response.json()
|
|
|
46 |
job_result = job
|
47 |
|
48 |
while job_result['status'] not in ['succeeded', 'failed']:
|
49 |
+
time.sleep(0.5)
|
50 |
job_result = self.get_job(job['job'])
|
51 |
|
52 |
return job_result
|
|
|
80 |
return response
|
81 |
|
82 |
|
83 |
+
def image_to_base64(image):
|
84 |
+
# Convert the image to bytes
|
85 |
+
buffered = BytesIO()
|
86 |
+
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
|
|
|
|
87 |
|
88 |
+
# Encode the bytes to base64
|
89 |
+
img_str = base64.b64encode(buffered.getvalue())
|
90 |
|
91 |
return img_str.decode('utf-8') # Convert bytes to string
|
92 |
|
|
|
100 |
text = text[:-4]
|
101 |
return text
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def get_data(text):
|
105 |
results = {}
|
|
|
164 |
|
165 |
return result
|
166 |
|
167 |
+
def place_lora(current_prompt, lora_name):
|
168 |
+
pattern = r"<lora:" + lora_name + r":.*?>"
|
169 |
+
|
170 |
+
if re.search(pattern, current_prompt):
|
171 |
+
yield re.sub(pattern, "", current_prompt)
|
172 |
+
else:
|
173 |
+
yield current_prompt + " <lora:" + lora_name + ":1> "
|
174 |
|
175 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
176 |
model_list = prodia_client.list_models()
|
177 |
+
lora_list = prodia_client.list_loras()
|
178 |
model_names = {}
|
179 |
|
180 |
for model_name in model_list:
|
|
|
182 |
model_names[name_without_ext] = model_name
|
183 |
|
184 |
|
185 |
+
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_count, gallery):
|
186 |
+
yield {
|
187 |
+
text_button: gr.update(visible=False),
|
188 |
+
stop_btn: gr.update(visible=True),
|
189 |
+
}
|
190 |
data = {
|
191 |
"prompt": prompt,
|
192 |
"negative_prompt": negative_prompt,
|
|
|
196 |
"cfg_scale": cfg_scale,
|
197 |
"width": width,
|
198 |
"height": height,
|
199 |
+
"seed": seed
|
|
|
200 |
}
|
201 |
|
202 |
total_images = []
|
203 |
+
threads = []
|
204 |
|
205 |
+
def generate_one_image():
|
206 |
+
result = prodia_client.generate(data)
|
207 |
+
job = prodia_client.wait(result)
|
208 |
+
total_images.append(job['imageUrl'])
|
209 |
|
210 |
+
for x in range(batch_count):
|
211 |
+
t = Thread(target=generate_one_image)
|
212 |
+
threads.append(t)
|
213 |
+
t.start()
|
214 |
|
215 |
+
for t in threads:
|
216 |
+
t.join()
|
217 |
+
|
218 |
+
new_images_list = [img['name'] for img in gallery]
|
219 |
+
|
220 |
+
for image in total_images:
|
221 |
+
new_images_list.insert(0, image)
|
222 |
|
223 |
+
if batch_count > 1:
|
224 |
+
results = gr.update(value=total_images, preview=False)
|
225 |
+
else:
|
226 |
+
results = gr.update(value=total_images, preview=True)
|
227 |
+
|
228 |
+
yield {
|
229 |
+
text_button: gr.update(visible=True),
|
230 |
+
stop_btn: gr.update(visible=False),
|
231 |
+
image_output: results,
|
232 |
+
gallery_obj: gr.update(value=new_images_list),
|
233 |
+
}
|
234 |
|
|
|
235 |
|
236 |
+
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed,
|
237 |
+
batch_count, gallery):
|
238 |
+
if input_image is None:
|
239 |
+
return
|
240 |
+
yield {
|
241 |
+
i2i_text_button: gr.update(visible=False),
|
242 |
+
i2i_stop_btn: gr.update(visible=True),
|
243 |
+
}
|
244 |
+
data = {
|
245 |
+
"imageData": image_to_base64(input_image),
|
246 |
+
"denoising_strength": denoising,
|
247 |
+
"prompt": prompt,
|
248 |
+
"negative_prompt": negative_prompt,
|
249 |
+
"model": model,
|
250 |
+
"steps": steps,
|
251 |
+
"sampler": sampler,
|
252 |
+
"cfg_scale": cfg_scale,
|
253 |
+
"width": width,
|
254 |
+
"height": height,
|
255 |
+
"seed": seed
|
256 |
+
}
|
257 |
|
258 |
+
total_images = []
|
259 |
+
threads = []
|
260 |
|
261 |
+
def generate_one_image():
|
262 |
+
result = prodia_client.transform(data)
|
263 |
+
job = prodia_client.wait(result)
|
264 |
+
total_images.append(job['imageUrl'])
|
265 |
|
266 |
for x in range(batch_count):
|
267 |
+
t = Thread(target=generate_one_image)
|
268 |
+
threads.append(t)
|
269 |
t.start()
|
270 |
|
271 |
+
for t in threads:
|
272 |
t.join()
|
273 |
|
274 |
new_images_list = [img['name'] for img in gallery]
|
|
|
276 |
for image in total_images:
|
277 |
new_images_list.insert(0, image)
|
278 |
|
279 |
+
if batch_count > 1:
|
280 |
+
results = gr.update(value=total_images, preview=False)
|
281 |
+
else:
|
282 |
+
results = gr.update(value=total_images, preview=True)
|
283 |
|
284 |
+
yield {
|
285 |
+
i2i_text_button: gr.update(visible=True),
|
286 |
+
i2i_stop_btn: gr.update(visible=False),
|
287 |
+
i2i_image_output: results,
|
288 |
+
gallery_obj: gr.update(value=new_images_list),
|
289 |
+
}
|
290 |
+
|
291 |
+
def upscale_fn(image, scale):
|
292 |
+
if image is None:
|
293 |
+
return
|
294 |
+
yield {
|
295 |
+
upscale_btn: gr.update(visible=False),
|
296 |
+
upscale_stop: gr.update(visible=True),
|
297 |
+
}
|
298 |
+
job = prodia_client.upscale({
|
299 |
+
'imageData': image_to_base64(image),
|
300 |
+
'resize': scale
|
301 |
+
})
|
302 |
+
|
303 |
+
result = prodia_client.wait(job)
|
304 |
+
yield {
|
305 |
+
upscale_output: result['imageUrl'],
|
306 |
+
upscale_btn: gr.update(visible=True),
|
307 |
+
upscale_stop: gr.update(visible=False)
|
308 |
+
}
|
309 |
+
|
310 |
+
def stop_upscale():
|
311 |
+
return {
|
312 |
+
upscale_btn: gr.update(visible=True),
|
313 |
+
upscale_stop: gr.update(visible=False)
|
314 |
+
}
|
315 |
+
|
316 |
+
def stop_t2i():
|
317 |
+
return {
|
318 |
+
text_button: gr.update(visible=True),
|
319 |
+
stop_btn: gr.update(visible=False)
|
320 |
+
}
|
321 |
+
|
322 |
+
def stop_i2i():
|
323 |
+
return {
|
324 |
+
i2i_text_button: gr.update(visible=True),
|
325 |
+
i2i_stop_btn: gr.update(visible=False)
|
326 |
+
}
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
samplers = [
|
331 |
+
"Euler",
|
332 |
+
"Euler a",
|
333 |
+
"LMS",
|
334 |
+
"Heun",
|
335 |
+
"DPM2",
|
336 |
+
"DPM2 a",
|
337 |
+
"DPM++ 2S a",
|
338 |
+
"DPM++ 2M",
|
339 |
+
"DPM++ SDE",
|
340 |
+
"DPM fast",
|
341 |
+
"DPM adaptive",
|
342 |
+
"LMS Karras",
|
343 |
+
"DPM2 Karras",
|
344 |
+
"DPM2 a Karras",
|
345 |
+
"DPM++ 2S a Karras",
|
346 |
+
"DPM++ 2M Karras",
|
347 |
+
"DPM++ SDE Karras",
|
348 |
+
"DDIM",
|
349 |
+
"PLMS",
|
350 |
+
]
|
351 |
|
352 |
css = """
|
353 |
+
:root, .dark{
|
354 |
+
--checkbox-label-gap: 0.25em 0.1em;
|
355 |
+
--section-header-text-size: 12pt;
|
356 |
+
--block-background-fill: transparent;
|
357 |
+
}
|
358 |
+
.block.padded:not(.gradio-accordion) {
|
359 |
+
padding: 0 !important;
|
360 |
+
}
|
361 |
+
div.gradio-container{
|
362 |
+
max-width: unset !important;
|
363 |
+
}
|
364 |
+
.compact{
|
365 |
+
background: transparent !important;
|
366 |
+
padding: 0 !important;
|
367 |
+
}
|
368 |
+
div.form{
|
369 |
+
border-width: 0;
|
370 |
+
box-shadow: none;
|
371 |
+
background: transparent;
|
372 |
+
overflow: visible;
|
373 |
+
gap: 0.5em;
|
374 |
+
}
|
375 |
+
.block.gradio-dropdown,
|
376 |
+
.block.gradio-slider,
|
377 |
+
.block.gradio-checkbox,
|
378 |
+
.block.gradio-textbox,
|
379 |
+
.block.gradio-radio,
|
380 |
+
.block.gradio-checkboxgroup,
|
381 |
+
.block.gradio-number,
|
382 |
+
.block.gradio-colorpicker {
|
383 |
+
border-width: 0 !important;
|
384 |
+
box-shadow: none !important;
|
385 |
+
}
|
386 |
+
.gradio-dropdown label span:not(.has-info),
|
387 |
+
.gradio-textbox label span:not(.has-info),
|
388 |
+
.gradio-number label span:not(.has-info)
|
389 |
+
{
|
390 |
+
margin-bottom: 0;
|
391 |
+
}
|
392 |
+
.gradio-dropdown ul.options{
|
393 |
+
z-index: 3000;
|
394 |
+
min-width: fit-content;
|
395 |
+
max-width: inherit;
|
396 |
+
white-space: nowrap;
|
397 |
+
}
|
398 |
+
.gradio-dropdown ul.options li.item {
|
399 |
+
padding: 0.05em 0;
|
400 |
+
}
|
401 |
+
.gradio-dropdown ul.options li.item.selected {
|
402 |
+
background-color: var(--neutral-100);
|
403 |
+
}
|
404 |
+
.dark .gradio-dropdown ul.options li.item.selected {
|
405 |
+
background-color: var(--neutral-900);
|
406 |
+
}
|
407 |
+
.gradio-dropdown div.wrap.wrap.wrap.wrap{
|
408 |
+
box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);
|
409 |
+
}
|
410 |
+
.gradio-dropdown:not(.multiselect) .wrap-inner.wrap-inner.wrap-inner{
|
411 |
+
flex-wrap: unset;
|
412 |
+
}
|
413 |
+
.gradio-dropdown .single-select{
|
414 |
+
white-space: nowrap;
|
415 |
+
overflow: hidden;
|
416 |
+
}
|
417 |
+
.gradio-dropdown .token-remove.remove-all.remove-all{
|
418 |
+
display: none;
|
419 |
+
}
|
420 |
+
.gradio-dropdown.multiselect .token-remove.remove-all.remove-all{
|
421 |
+
display: flex;
|
422 |
+
}
|
423 |
+
.gradio-slider input[type="number"]{
|
424 |
+
width: 6em;
|
425 |
+
}
|
426 |
+
.block.gradio-checkbox {
|
427 |
+
margin: 0.75em 1.5em 0 0;
|
428 |
+
}
|
429 |
+
.gradio-html div.wrap{
|
430 |
+
height: 100%;
|
431 |
+
}
|
432 |
+
div.gradio-html.min{
|
433 |
+
min-height: 0;
|
434 |
+
}
|
435 |
+
#model_dd {
|
436 |
+
width: 16%;
|
437 |
}
|
438 |
"""
|
439 |
|
440 |
with gr.Blocks(css=css) as demo:
|
441 |
+
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
442 |
+
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models(), elem_id="model_dd")
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
with gr.Tabs() as tabs:
|
445 |
+
with gr.Tab("txt2img", id='t2i'):
|
446 |
with gr.Row():
|
447 |
+
with gr.Column(scale=6, min_width=600):
|
448 |
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
449 |
+
placeholder="Prompt", show_label=False, lines=3)
|
450 |
+
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
451 |
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
452 |
+
with gr.Row():
|
453 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
454 |
+
stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False)
|
455 |
|
456 |
with gr.Row():
|
457 |
+
with gr.Column():
|
458 |
with gr.Tab("Generation"):
|
459 |
with gr.Row():
|
460 |
with gr.Column(scale=1):
|
461 |
+
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
462 |
+
choices=samplers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
|
464 |
with gr.Column(scale=1):
|
465 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
|
466 |
|
467 |
with gr.Row():
|
468 |
+
with gr.Column(scale=8):
|
469 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
470 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
471 |
|
472 |
with gr.Column(scale=1):
|
473 |
+
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
474 |
+
batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1)
|
475 |
|
476 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
477 |
seed = gr.Number(label="Seed", value=-1)
|
478 |
|
479 |
with gr.Tab("Lora"):
|
|
|
480 |
with gr.Row():
|
481 |
+
for lora in lora_list:
|
482 |
lora_btn = gr.Button(lora, size="sm")
|
483 |
lora_btn.click(place_lora, inputs=[prompt, lora_btn], outputs=prompt)
|
484 |
|
485 |
+
with gr.Column():
|
486 |
+
image_output = gr.Gallery(columns=3,
|
487 |
+
value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"])
|
488 |
+
|
489 |
+
with gr.Tab("img2img", id='i2i'):
|
490 |
+
with gr.Row():
|
491 |
+
with gr.Column(scale=6, min_width=600):
|
492 |
+
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
493 |
+
placeholder="Prompt", show_label=False, lines=3)
|
494 |
+
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
495 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
496 |
+
with gr.Row():
|
497 |
+
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
498 |
+
i2i_stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False)
|
499 |
+
|
500 |
+
with gr.Row():
|
501 |
+
with gr.Column(scale=1):
|
502 |
+
with gr.Tab("Generation"):
|
503 |
+
i2i_image_input = gr.Image(type="pil")
|
504 |
+
|
505 |
+
with gr.Row():
|
506 |
+
with gr.Column(scale=1):
|
507 |
+
i2i_sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True,
|
508 |
+
label="Sampling Method", choices=samplers)
|
509 |
+
|
510 |
+
with gr.Column(scale=1):
|
511 |
+
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
|
512 |
+
|
513 |
+
with gr.Row():
|
514 |
+
with gr.Column(scale=6):
|
515 |
+
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
516 |
+
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
517 |
+
|
518 |
+
with gr.Column(scale=1):
|
519 |
+
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
520 |
+
i2i_batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1)
|
521 |
+
|
522 |
+
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
523 |
+
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
524 |
+
i2i_seed = gr.Number(label="Seed", value=-1)
|
525 |
+
|
526 |
+
with gr.Tab("Lora"):
|
527 |
+
with gr.Row():
|
528 |
+
for lora in lora_list:
|
529 |
+
lora_btn = gr.Button(lora, size="sm")
|
530 |
+
lora_btn.click(place_lora, inputs=[i2i_prompt, lora_btn], outputs=i2i_prompt)
|
531 |
+
|
532 |
+
with gr.Column(scale=1):
|
533 |
+
i2i_image_output = gr.Gallery(columns=3,
|
534 |
+
value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"])
|
535 |
+
|
536 |
+
with gr.Tab("Extras"):
|
537 |
+
with gr.Row():
|
538 |
+
with gr.Tab("Single Image"):
|
539 |
+
with gr.Column():
|
540 |
+
upscale_image_input = gr.Image(type="pil")
|
541 |
+
upscale_btn = gr.Button("Generate", variant="primary")
|
542 |
+
upscale_stop = gr.Button("Stop", variant="stop", visible=False)
|
543 |
+
with gr.Tab("Scale by"):
|
544 |
+
scale_by = gr.Radio([2, 4], value=2, label="Resize")
|
545 |
+
|
546 |
+
upscale_output = gr.Image()
|
547 |
|
548 |
with gr.Tab("PNG Info"):
|
549 |
def plaintext_to_html(text, classname=None):
|
|
|
570 |
|
571 |
return info
|
572 |
|
573 |
+
|
574 |
with gr.Row():
|
575 |
with gr.Column():
|
576 |
image_input = gr.Image(type="pil")
|
|
|
580 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
581 |
|
582 |
with gr.Tab("Gallery"):
|
583 |
+
gallery_obj = gr.Gallery(height=1000, columns=6)
|
584 |
+
|
585 |
+
t2i_event = text_button.click(txt2img,
|
586 |
+
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
|
587 |
+
seed, batch_count, gallery_obj], outputs=[image_output, gallery_obj, text_button, stop_btn])
|
588 |
+
stop_btn.click(fn=stop_t2i, outputs=[text_button, stop_btn], cancels=[t2i_event])
|
589 |
|
|
|
|
|
|
|
|
|
590 |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
591 |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input],
|
592 |
+
outputs=[tabs, prompt, negative_prompt, steps, seed, model, sampler, width, height,
|
593 |
+
cfg_scale])
|
594 |
+
|
595 |
+
i2i_event = i2i_text_button.click(img2img,
|
596 |
+
inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
|
597 |
+
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
|
598 |
+
i2i_seed, i2i_batch_count, gallery_obj],
|
599 |
+
outputs=[i2i_image_output, gallery_obj, i2i_text_button, i2i_stop_btn])
|
600 |
+
i2i_stop_btn.click(fn=stop_i2i, outputs=[i2i_text_button, i2i_stop_btn], cancels=[i2i_event])
|
601 |
+
|
602 |
+
upscale_event = upscale_btn.click(fn=upscale_fn, inputs=[upscale_image_input, scale_by], outputs=[upscale_output, upscale_btn, upscale_stop])
|
603 |
+
upscale_stop.click(fn=stop_upscale, outputs=[upscale_btn, upscale_stop], cancels=[upscale_event])
|
604 |
|
605 |
+
demo.queue(concurrency_count=64, max_size=80, api_open=False).launch(max_threads=256)
|
|