Plachta commited on
Commit
a812692
·
verified ·
1 Parent(s): 9cf98e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -15
app.py CHANGED
@@ -10,11 +10,13 @@ import numpy as np
10
  from pydub import AudioSegment
11
 
12
  # Load model and configuration
13
- device = 'cuda'
14
 
15
  dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
16
  "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
17
  "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
 
 
18
  config = yaml.safe_load(open(dit_config_path, 'r'))
19
  model_params = recursive_munch(config['model_params'])
20
  model = build_model(model_params, stage='DiT')
@@ -46,6 +48,19 @@ bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_
46
  bigvgan_model.remove_weight_norm()
47
  bigvgan_model = bigvgan_model.eval().to(device)
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  # whisper
50
  from transformers import AutoFeatureExtractor, WhisperModel
51
 
@@ -119,16 +134,12 @@ def adjust_f0_semitones(f0_sequence, n_semitones):
119
  def crossfade(chunk1, chunk2, overlap):
120
  fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
121
  fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
122
- if len(chunk2) < overlap:
123
- chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
124
- else:
125
- chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
126
  return chunk2
127
 
128
  # streaming and chunk processing related params
129
- overlap_frame_len = 16
130
  bitrate = "320k"
131
-
132
  @spaces.GPU
133
  @torch.no_grad()
134
  @torch.inference_mode()
@@ -232,8 +243,8 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
232
  style2 = campplus_model(feat2.unsqueeze(0))
233
 
234
  if f0_condition:
235
- F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03)
236
- F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03)
237
 
238
  F0_ori = torch.from_numpy(F0_ori).to(device)[None]
239
  F0_alt = torch.from_numpy(F0_alt).to(device)[None]
@@ -272,7 +283,7 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
272
  chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
273
  is_last_chunk = processed_frames + max_source_window >= cond.size(1)
274
  cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
275
- with torch.autocast(device_type=device.type, dtype=torch.float16):
276
  # Voice Conversion
277
  vc_target = inference_module.cfm.inference(cat_condition,
278
  torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
@@ -326,7 +337,7 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
326
 
327
 
328
  if __name__ == "__main__":
329
- description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
330
  "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
331
  "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
332
  "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
@@ -334,7 +345,7 @@ if __name__ == "__main__":
334
  inputs = [
335
  gr.Audio(type="filepath", label="Source Audio / 源音频"),
336
  gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
337
- gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
338
  gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
339
  gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
340
  gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
@@ -344,11 +355,11 @@ if __name__ == "__main__":
344
  ]
345
 
346
  examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
347
- ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
348
  ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
349
- "examples/reference/teio_0.wav", 25, 1.0, 0.7, True, False, 0],
350
  ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
351
- "examples/reference/trump_0.wav", 25, 1.0, 0.7, True, False, -12],
352
  ]
353
 
354
  outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
 
10
  from pydub import AudioSegment
11
 
12
  # Load model and configuration
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
 
15
  dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
16
  "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
17
  "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
18
+ # dit_checkpoint_path = "E:/DiT_epoch_00018_step_801000.pth"
19
+ # dit_config_path = "configs/config_dit_mel_seed_uvit_whisper_small_encoder_wavenet.yml"
20
  config = yaml.safe_load(open(dit_config_path, 'r'))
21
  model_params = recursive_munch(config['model_params'])
22
  model = build_model(model_params, stage='DiT')
 
48
  bigvgan_model.remove_weight_norm()
49
  bigvgan_model = bigvgan_model.eval().to(device)
50
 
51
+ ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
52
+
53
+ codec_config = yaml.safe_load(open(config_path))
54
+ codec_model_params = recursive_munch(codec_config['model_params'])
55
+ codec_encoder = build_model(codec_model_params, stage="codec")
56
+
57
+ ckpt_params = torch.load(ckpt_path, map_location="cpu")
58
+
59
+ for key in codec_encoder:
60
+ codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
61
+ _ = [codec_encoder[key].eval() for key in codec_encoder]
62
+ _ = [codec_encoder[key].to(device) for key in codec_encoder]
63
+
64
  # whisper
65
  from transformers import AutoFeatureExtractor, WhisperModel
66
 
 
134
  def crossfade(chunk1, chunk2, overlap):
135
  fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
136
  fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
137
+ chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
 
 
 
138
  return chunk2
139
 
140
  # streaming and chunk processing related params
 
141
  bitrate = "320k"
142
+ overlap_frame_len = 16
143
  @spaces.GPU
144
  @torch.no_grad()
145
  @torch.inference_mode()
 
243
  style2 = campplus_model(feat2.unsqueeze(0))
244
 
245
  if f0_condition:
246
+ F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
247
+ F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
248
 
249
  F0_ori = torch.from_numpy(F0_ori).to(device)[None]
250
  F0_alt = torch.from_numpy(F0_alt).to(device)[None]
 
283
  chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
284
  is_last_chunk = processed_frames + max_source_window >= cond.size(1)
285
  cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
286
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
287
  # Voice Conversion
288
  vc_target = inference_module.cfm.inference(cat_condition,
289
  torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
 
337
 
338
 
339
  if __name__ == "__main__":
340
+ description = ("State-of-the-Art zero-shot voice conversion/singing voice conversion. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
341
  "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
342
  "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
343
  "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
 
345
  inputs = [
346
  gr.Audio(type="filepath", label="Source Audio / 源音频"),
347
  gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
348
+ gr.Slider(minimum=1, maximum=200, value=25, step=1, label="Diffusion Steps / 扩散步数", info="25 by default, 50~100 for best quality / 默认为 25,50~100 为最佳质量"),
349
  gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
350
  gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
351
  gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
 
355
  ]
356
 
357
  examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
358
+ ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, False, True, 0],
359
  ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
360
+ "examples/reference/kobe_0.wav", 50, 1.0, 0.7, True, False, -6],
361
  ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
362
+ "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
363
  ]
364
 
365
  outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),