Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as cp | |
from torch import nn | |
def get_nonlinear(config_str, channels): | |
nonlinear = nn.Sequential() | |
for name in config_str.split('-'): | |
if name == 'relu': | |
nonlinear.add_module('relu', nn.ReLU(inplace=True)) | |
elif name == 'prelu': | |
nonlinear.add_module('prelu', nn.PReLU(channels)) | |
elif name == 'batchnorm': | |
nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels)) | |
elif name == 'batchnorm_': | |
nonlinear.add_module('batchnorm', | |
nn.BatchNorm1d(channels, affine=False)) | |
else: | |
raise ValueError('Unexpected module ({}).'.format(name)) | |
return nonlinear | |
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2): | |
mean = x.mean(dim=dim) | |
std = x.std(dim=dim, unbiased=unbiased) | |
stats = torch.cat([mean, std], dim=-1) | |
if keepdim: | |
stats = stats.unsqueeze(dim=dim) | |
return stats | |
class StatsPool(nn.Module): | |
def forward(self, x): | |
return statistics_pooling(x) | |
class TDNNLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
bias=False, | |
config_str='batchnorm-relu'): | |
super(TDNNLayer, self).__init__() | |
if padding < 0: | |
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format( | |
kernel_size) | |
padding = (kernel_size - 1) // 2 * dilation | |
self.linear = nn.Conv1d(in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
self.nonlinear = get_nonlinear(config_str, out_channels) | |
def forward(self, x): | |
x = self.linear(x) | |
x = self.nonlinear(x) | |
return x | |
class CAMLayer(nn.Module): | |
def __init__(self, | |
bn_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
bias, | |
reduction=2): | |
super(CAMLayer, self).__init__() | |
self.linear_local = nn.Conv1d(bn_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1) | |
self.relu = nn.ReLU(inplace=True) | |
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
y = self.linear_local(x) | |
context = x.mean(-1, keepdim=True)+self.seg_pooling(x) | |
context = self.relu(self.linear1(context)) | |
m = self.sigmoid(self.linear2(context)) | |
return y*m | |
def seg_pooling(self, x, seg_len=100, stype='avg'): | |
if stype == 'avg': | |
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) | |
elif stype == 'max': | |
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) | |
else: | |
raise ValueError('Wrong segment pooling type.') | |
shape = seg.shape | |
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1) | |
seg = seg[..., :x.shape[-1]] | |
return seg | |
class CAMDenseTDNNLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
bn_channels, | |
kernel_size, | |
stride=1, | |
dilation=1, | |
bias=False, | |
config_str='batchnorm-relu', | |
memory_efficient=False): | |
super(CAMDenseTDNNLayer, self).__init__() | |
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format( | |
kernel_size) | |
padding = (kernel_size - 1) // 2 * dilation | |
self.memory_efficient = memory_efficient | |
self.nonlinear1 = get_nonlinear(config_str, in_channels) | |
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False) | |
self.nonlinear2 = get_nonlinear(config_str, bn_channels) | |
self.cam_layer = CAMLayer(bn_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
def bn_function(self, x): | |
return self.linear1(self.nonlinear1(x)) | |
def forward(self, x): | |
if self.training and self.memory_efficient: | |
x = cp.checkpoint(self.bn_function, x) | |
else: | |
x = self.bn_function(x) | |
x = self.cam_layer(self.nonlinear2(x)) | |
return x | |
class CAMDenseTDNNBlock(nn.ModuleList): | |
def __init__(self, | |
num_layers, | |
in_channels, | |
out_channels, | |
bn_channels, | |
kernel_size, | |
stride=1, | |
dilation=1, | |
bias=False, | |
config_str='batchnorm-relu', | |
memory_efficient=False): | |
super(CAMDenseTDNNBlock, self).__init__() | |
for i in range(num_layers): | |
layer = CAMDenseTDNNLayer(in_channels=in_channels + i * out_channels, | |
out_channels=out_channels, | |
bn_channels=bn_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
bias=bias, | |
config_str=config_str, | |
memory_efficient=memory_efficient) | |
self.add_module('tdnnd%d' % (i + 1), layer) | |
def forward(self, x): | |
for layer in self: | |
x = torch.cat([x, layer(x)], dim=1) | |
return x | |
class TransitLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
bias=True, | |
config_str='batchnorm-relu'): | |
super(TransitLayer, self).__init__() | |
self.nonlinear = get_nonlinear(config_str, in_channels) | |
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias) | |
def forward(self, x): | |
x = self.nonlinear(x) | |
x = self.linear(x) | |
return x | |
class DenseLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
bias=False, | |
config_str='batchnorm-relu'): | |
super(DenseLayer, self).__init__() | |
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias) | |
self.nonlinear = get_nonlinear(config_str, out_channels) | |
def forward(self, x): | |
if len(x.shape) == 2: | |
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1) | |
else: | |
x = self.linear(x) | |
x = self.nonlinear(x) | |
return x | |
class BasicResBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, in_planes, planes, stride=1): | |
super(BasicResBlock, self).__init__() | |
self.conv1 = nn.Conv2d(in_planes, | |
planes, | |
kernel_size=3, | |
stride=(stride, 1), | |
padding=1, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, | |
planes, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=(stride, 1), | |
bias=False), | |
nn.BatchNorm2d(self.expansion * planes)) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
out += self.shortcut(x) | |
out = F.relu(out) | |
return out |