|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer, util |
|
import openai |
|
import os |
|
import matplotlib.pyplot as plt |
|
from matplotlib import font_manager |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
filename = "output_topic_details.txt" |
|
retrieval_model_name = 'output/sentence-transformer-finetuned/' |
|
|
|
openai.api_key = os.environ["OPENAI_API_KEY"] |
|
|
|
system_message = "You are a game chatbot specialized in recommending video games based on genre, what they are about, and price." |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
try: |
|
retrieval_model = SentenceTransformer(retrieval_model_name) |
|
print("Models loaded successfully.") |
|
except Exception as e: |
|
print(f"Failed to load models: {e}") |
|
|
|
def load_and_preprocess_text(filename): |
|
""" |
|
Load and preprocess text from a file, removing empty lines and stripping whitespace. |
|
""" |
|
try: |
|
with open(filename, 'r', encoding='utf-8') as file: |
|
segments = [line.strip() for line in file if line.strip()] |
|
print("Text loaded and preprocessed successfully.") |
|
return segments |
|
except Exception as e: |
|
print(f"Failed to load or preprocess text: {e}") |
|
return [] |
|
|
|
segments = load_and_preprocess_text(filename) |
|
|
|
def find_relevant_segment(user_query, segments): |
|
""" |
|
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings. |
|
This version finds the best match based on the content of the query. |
|
""" |
|
try: |
|
|
|
lower_query = user_query.lower() |
|
|
|
|
|
query_embedding = retrieval_model.encode(lower_query) |
|
segment_embeddings = retrieval_model.encode(segments) |
|
|
|
|
|
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0] |
|
|
|
|
|
best_idx = similarities.argmax() |
|
|
|
|
|
return segments[best_idx] |
|
except Exception as e: |
|
print(f"Error in finding relevant segment: {e}") |
|
return "" |
|
|
|
def generate_response(user_query, relevant_segment): |
|
""" |
|
Generate a response emphasizing the bot's capability in providing video game reccomendations. |
|
""" |
|
try: |
|
user_message = f"Here's the information on this game: {relevant_segment}" |
|
|
|
|
|
messages.append({"role": "user", "content": user_message}) |
|
|
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages=messages, |
|
max_tokens=400, |
|
temperature=0.2, |
|
top_p=1, |
|
frequency_penalty=0, |
|
presence_penalty=0 |
|
) |
|
|
|
|
|
output_text = response['choices'][0]['message']['content'].strip() |
|
|
|
|
|
messages.append({"role": "assistant", "content": output_text}) |
|
|
|
return output_text |
|
|
|
except Exception as e: |
|
print(f"Error in generating response: {e}") |
|
return f"Error in generating response: {e}" |
|
|
|
def query_model(question): |
|
""" |
|
Process a question, find relevant information, and generate a response. |
|
""" |
|
if question == "": |
|
return "Welcome to Plai! Ask me for any game recommendations." |
|
relevant_segment = find_relevant_segment(question, segments) |
|
if not relevant_segment: |
|
return "Could not find specific information. Please refine your question." |
|
response = generate_response(question, relevant_segment) |
|
return response |
|
|
|
|
|
welcome_message = """ |
|
<span style="color:#FFF4EA; font-size:90px; font-weight:bold;">˚˖𓍢ִ໋🌷͙֒✧ Welcome to Plai!͙֒˚.🎀༘⋆ .</span> |
|
|
|
<span style="color:#d89b9b; font-size:40px; font-weight:light;">🫧𓍢ִ໋🍬˚˖𓍢ִ໋🦢˚Your AI-Driven Assistant for all Videogame Related Queries. Created by Perennial, Jiya, and Ly-Ly of the 2024 Kode With Klossy San Francisco Camp.</span> |
|
""" |
|
topics = """ |
|
<span style="color:#AB4E68; font-size:30px; font-weight:bold;">𓍢ִ໋🌷͙֒₊˚*ੈ🎀⸝⸝🍓⋆Feel Free to ask for Recommendations Based on:</span> |
|
|
|
<span style="color:#A25F9D; font-size:20px; font-weight:light;">୭ 🧷 ✧ ˚. 🎀 Genre</span> |
|
|
|
<span style="color:#A25F9D; font-size:20px; font-weight:light;">₊˚˖𓍢ִ🍓✧˚.🎀༘⋆゚Affordability</span> |
|
|
|
<span style="color:#A25F9D; font-size:20px; font-weight:light;">🍰♡ ༘*.゚🧸🎀 Feeling</span> |
|
|
|
<span style="color:#A25F9D; font-size:20px; font-weight:light;">˚₊‧꒰ა ꣑ৎ ໒꒱ ‧₊˚</span> |
|
""" |
|
theme = gr.themes.Base().set( |
|
background_fill_primary='#FAB9CB', |
|
background_fill_primary_dark='#AB4E68', |
|
background_fill_secondary='#AB4E68', |
|
background_fill_secondary_dark='#AB4E68', |
|
border_color_accent='#FAB9CB', |
|
border_color_accent_dark='#AB4E68', |
|
border_color_accent_subdued='#AB4E68', |
|
border_color_primary='#AB4E68', |
|
block_border_color='#FAB9CB', |
|
button_primary_background_fill='#AB4E68', |
|
button_primary_background_fill_dark='#AB4E68', |
|
) |
|
|
|
|
|
with gr.Blocks(theme=theme) as demo: |
|
gr.Image("Video Game Banner.gif", show_label = False, show_share_button = False, show_download_button = False) |
|
gr.Markdown(welcome_message) |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(topics) |
|
gr.Image("Image.png", show_label = False, show_share_button = False, show_download_button = False, height=500, width=500 ) |
|
with gr.Row(): |
|
with gr.Column(): |
|
question = gr.Textbox(label="ׁ ׁ ꥓ ݄ ׁ 𖦹🎀 ׅ 𓈒Your Question⋆𐙚₊˚⊹♡", placeholder="༘⋆🌷🫧What do you Want to ask About?💭₊˚ෆ") |
|
answer = gr.Textbox(label="˚ ༘˚Plai Responseೀ⋆。", placeholder="ೀ🍨‧° 🎀⊹°。♡Plai will Respond Here...", interactive=False, lines=10) |
|
submit_button = gr.Button("˚₊‧꒰აSubmit໒꒱ ‧₊˚") |
|
submit_button.click(fn=query_model, inputs=question, outputs=answer) |
|
|
|
|
|
|
|
demo.launch(share=True) |
|
|