|
import gradio as gr |
|
import pandas as pd |
|
import io |
|
import base64 |
|
import uuid |
|
import pixeltable as pxt |
|
from pixeltable.iterators import DocumentSplitter |
|
import numpy as np |
|
from pixeltable.functions.huggingface import sentence_transformer |
|
from pixeltable.functions import openai |
|
from pixeltable.functions.fireworks import chat_completions as f_chat_completions |
|
from pixeltable.functions.mistralai import chat_completions |
|
from gradio.themes import Monochrome |
|
|
|
import os |
|
import getpass |
|
|
|
"""## Store OpenAI API Key""" |
|
|
|
if 'OPENAI_API_KEY' not in os.environ: |
|
os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API key:') |
|
|
|
if 'FIREWORKS_API_KEY' not in os.environ: |
|
os.environ['FIREWORKS_API_KEY'] = getpass.getpass('Fireworks API Key:') |
|
|
|
if 'MISTRAL_API_KEY' not in os.environ: |
|
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:') |
|
|
|
"""## Creating UDFs: Embedding and Prompt Functions""" |
|
|
|
|
|
@pxt.expr_udf |
|
def e5_embed(text: str) -> np.ndarray: |
|
return sentence_transformer(text, model_id='intfloat/e5-large-v2') |
|
|
|
|
|
@pxt.udf |
|
def create_prompt(top_k_list: list[dict], question: str) -> str: |
|
concat_top_k = '\n\n'.join( |
|
elt['text'] for elt in reversed(top_k_list) |
|
) |
|
return f''' |
|
PASSAGES: |
|
|
|
{concat_top_k} |
|
|
|
QUESTION: |
|
|
|
{question}''' |
|
|
|
"""Gradio Application""" |
|
|
|
def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, show_question, show_correct_answer, show_gpt4omini, show_llamav3p23b, show_mistralsmall, progress=gr.Progress()): |
|
|
|
progress(0, desc="Initializing...") |
|
|
|
pxt.drop_dir('rag_demo', force=True) |
|
pxt.create_dir('rag_demo') |
|
|
|
|
|
|
|
if ground_truth_file.name.endswith('.csv'): |
|
queries_t = pxt.io.import_csv('rag_demo.queries', ground_truth_file.name) |
|
else: |
|
queries_t = pxt.io.import_excel('rag_demo.queries', ground_truth_file.name) |
|
|
|
progress(0.2, desc="Processing documents...") |
|
|
|
|
|
documents_t = pxt.create_table( |
|
'rag_demo.documents', |
|
{'document': pxt.DocumentType()} |
|
) |
|
|
|
|
|
documents_t.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf')) |
|
|
|
|
|
chunks_t = pxt.create_view( |
|
'rag_demo.chunks', |
|
documents_t, |
|
iterator=DocumentSplitter.create( |
|
document=documents_t.document, |
|
separators=chunk_separator, |
|
limit=chunk_limit if chunk_separator in ["token_limit", "char_limit"] else None |
|
) |
|
) |
|
|
|
progress(0.4, desc="Generating embeddings...") |
|
|
|
|
|
chunks_t.add_embedding_index('text', string_embed=e5_embed) |
|
|
|
|
|
@chunks_t.query |
|
def top_k(query_text: str): |
|
sim = chunks_t.text.similarity(query_text) |
|
return ( |
|
chunks_t.order_by(sim, asc=False) |
|
.select(chunks_t.text, sim=sim) |
|
.limit(5) |
|
) |
|
|
|
|
|
queries_t['question_context'] = chunks_t.top_k(queries_t.question) |
|
queries_t['prompt'] = create_prompt( |
|
queries_t.question_context, queries_t.question |
|
) |
|
|
|
|
|
msgs = [ |
|
{ |
|
'role': 'system', |
|
'content': 'Read the following passages and answer the question based on their contents.' |
|
}, |
|
{ |
|
'role': 'user', |
|
'content': queries_t.prompt |
|
} |
|
] |
|
|
|
progress(0.6, desc="Querying models...") |
|
|
|
|
|
queries_t['response'] = openai.chat_completions( |
|
model='gpt-4o-mini-2024-07-18', |
|
messages=msgs, |
|
max_tokens=300, |
|
top_p=0.9, |
|
temperature=0.7 |
|
) |
|
|
|
|
|
queries_t['response_2'] = f_chat_completions( |
|
messages=msgs, |
|
model='accounts/fireworks/models/llama-v3p2-3b-instruct', |
|
|
|
max_tokens=300, |
|
top_p=0.9, |
|
temperature=0.7 |
|
) |
|
|
|
queries_t['response_3'] = chat_completions( |
|
messages=msgs, |
|
model='mistral-small-latest', |
|
|
|
max_tokens=300, |
|
top_p=0.9, |
|
temperature=0.7 |
|
) |
|
|
|
|
|
queries_t['gpt4omini'] = queries_t.response.choices[0].message.content |
|
queries_t['llamav3p23b'] = queries_t.response_2.choices[0].message.content |
|
queries_t['mistralsmall'] = queries_t.response_3.choices[0].message.content |
|
|
|
|
|
columns_to_show = [] |
|
if show_question: |
|
columns_to_show.append(queries_t.question) |
|
if show_correct_answer: |
|
columns_to_show.append(queries_t.correct_answer) |
|
if show_gpt4omini: |
|
columns_to_show.append(queries_t.gpt4omini) |
|
if show_llamav3p23b: |
|
columns_to_show.append(queries_t.llamav3p23b) |
|
if show_mistralsmall: |
|
columns_to_show.append(queries_t.mistralsmall) |
|
|
|
df_output = queries_t.select(*columns_to_show).collect().to_pandas() |
|
|
|
try: |
|
|
|
return df_output |
|
except Exception as e: |
|
return f"An error occurred: {str(e)}", None |
|
|
|
def save_dataframe_as_csv(data): |
|
print(f"Type of data: {type(data)}") |
|
if isinstance(data, pd.DataFrame): |
|
print(f"Shape of DataFrame: {data.shape}") |
|
if isinstance(data, pd.DataFrame) and not data.empty: |
|
filename = f"results_{uuid.uuid4().hex[:8]}.csv" |
|
filepath = os.path.join('tmp', filename) |
|
os.makedirs('tmp', exist_ok=True) |
|
data.to_csv(filepath, index=False) |
|
return filepath |
|
return None |
|
|
|
|
|
with gr.Blocks(theme=Monochrome) as demo: |
|
gr.Markdown( |
|
""" |
|
<div max-width: 800px; margin: 0 auto;"> |
|
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 200px; margin-bottom: 20px;" /> |
|
<h1 style="margin-bottom: 0.5em;">Multi-LLM RAG Benchmark: Document Q&A with Groundtruth Comparison</h1> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
<p> |
|
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data. |
|
</p> |
|
""" |
|
) |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
<div style="background-color: #E5DDD4; border: 1px solid #e9ecef; border-radius: 8px; padding: 15px; margin-bottom: 20px;"> |
|
<strong>Disclaimer:</strong> This Gradio app is running on OpenAI, Mistral, and Fireworks accounts with the developer's personal API keys. |
|
If you wish to use it with your own hardware or API keys, you can |
|
<a href="https://huggingface.co/spaces/Pixeltable/Multi-LLM-RAG-with-Groundtruth-Comparison?duplicate=true" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">duplicate this Hugging Face Space</a> |
|
or run it locally or in Google Colab. |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("What This Demo Does", open = True): |
|
gr.Markdown(""" |
|
1. **Ingests Documents**: Uploads your PDF documents and a ground truth file (CSV or XLSX). |
|
2. **Process and Retrieve Data**: Store, chunk, index, orchestrate, and retrieve all data. |
|
4. **Generates Answers**: Leverages OpenAI to produce accurate answers based on the retrieved context. |
|
5. **Compares Results**: Displays the generated answers alongside the ground truth for easy evaluation. |
|
""") |
|
with gr.Column(): |
|
with gr.Accordion("How to Use", open = True): |
|
gr.Markdown(""" |
|
1. Upload your ground truth file (CSV or XLSX) with the following two columns: **question** and **correct_answer**. |
|
2. Upload one or more PDF documents that contain the information to answer these questions. |
|
3. Click "Process Files and Generate Output" to start the RAG process. |
|
4. View the results in the table below, comparing AI-generated answers to the ground truth. |
|
""") |
|
|
|
|
|
with gr.Row(): |
|
ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX) - Format to respect:question | correct_answer", file_count="single") |
|
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple") |
|
|
|
|
|
with gr.Row(): |
|
chunk_limit = gr.Slider(minimum=100, maximum=500, value=300, step=5, label="Chunk Size Limit (only used when the separator is token_/char_limit)") |
|
chunk_separator = gr.Dropdown( |
|
choices=["token_limit", "char_limit", "sentence", "paragraph", "heading"], |
|
value="token_limit", |
|
label="Chunk Separator" |
|
) |
|
|
|
with gr.Row(): |
|
show_question = gr.Checkbox(label="Show Question", value=True) |
|
show_correct_answer = gr.Checkbox(label="Show Correct Answer", value=True) |
|
show_gpt4omini = gr.Checkbox(label="Show GPT-4o-mini Answer", value=True) |
|
show_llamav3p23b = gr.Checkbox(label="Show LLaMA-v3-2-3B Answer", value=True) |
|
show_mistralsmall = gr.Checkbox(label="Show Mistral-Small Answer", value=True) |
|
|
|
|
|
process_button = gr.Button("Process Files and Generate Outputs") |
|
|
|
|
|
df_output = gr.DataFrame(label="Pixeltable Table", |
|
wrap=True |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
download_button = gr.Button("Download Results as CSV") |
|
with gr.Column(scale=2): |
|
csv_output = gr.File(label="CSV Download") |
|
|
|
def trigger_download(data): |
|
csv_path = save_dataframe_as_csv(data) |
|
return csv_path if csv_path else None |
|
|
|
process_button.click(process_files, |
|
inputs=[ground_truth_file, |
|
pdf_files, |
|
chunk_limit, |
|
chunk_separator, |
|
show_question, |
|
show_correct_answer, |
|
show_gpt4omini, |
|
show_llamav3p23b, |
|
show_mistralsmall], |
|
outputs=df_output) |
|
|
|
download_button.click( |
|
trigger_download, |
|
inputs=[df_output], |
|
outputs=[csv_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True) |