PierreBrunelle's picture
Update app.py
79e56cd verified
raw
history blame
16.8 kB
import gradio as gr
import pixeltable as pxt
from pixeltable.iterators import FrameIterator
from datetime import datetime
import PIL.Image
from pixeltable.functions import openai, image
import os
import getpass
import requests
import tempfile
import json
import math
from typing import Dict, Optional
# Constants
MAX_VIDEO_SIZE_MB = 35
MAX_FRAMES = 5
# Prompt templates
PROMPT_TEMPLATES = {
"descriptive": {
"name": "Descriptive Analysis",
"system_prompt": """You are a video content analyzer. Please generate a short and concise compelling description
that summarizes the overall action and content of this video sequence. Focus on describing
the key events, changes, and movements you observe across all frames.""",
"description": "Generates a clear, factual description of the video content"
},
"cinematic": {
"name": "Cinematic Analysis (Christopher Nolan style)",
"system_prompt": """You are Christopher Nolan, the acclaimed filmmaker. Describe this visual sequence
as one continuous, flowing narrative moment, as you would when discussing a pivotal
scene from one of your films. Focus on psychological undercurrents, visual symbolism,
and the deeper thematic implications of what unfolds.""",
"description": "Analyzes the video from a filmmaker's perspective with artistic interpretation"
},
"documentary": {
"name": "Documentary Style (David Attenborough)",
"system_prompt": """You are David Attenborough, the renowned naturalist and documentarian. Narrate this sequence
with your characteristic blend of scientific insight and storytelling prowess. Focus on the
compelling details that bring the subject matter to life, while maintaining your signature
warm, authoritative tone.""",
"description": "Creates a nature documentary style narration"
},
"technical": {
"name": "Technical Analysis",
"system_prompt": """You are a technical video analyst. Break down this sequence with precise attention to
technical details including movement patterns, visual composition, lighting conditions,
and any notable technical aspects of the footage.""",
"description": "Provides detailed technical analysis of the video"
},
"labelling": {
"name": "Labelling and Annotation",
"system_prompt": """You are a high-precision video labeling system designed to replace human labelers.
Analyze this sequence with extreme attention to detail, focusing on:
1. Object identification and tracking
2. Precise descriptions of movements and actions
3. Spatial relationships between objects
4. Changes in object positions and behaviors
Your goal is to provide detailed, accurate annotations that could be used for
training computer vision models or validating automated systems.""",
"description": "Provides detailed object and action annotations for machine learning purposes"
}
}
# Voice options
VOICE_OPTIONS = {
"alloy": "Alloy (Balanced)",
"echo": "Echo (Smooth)",
"fable": "Fable (Expressive)",
"onyx": "Onyx (Authoritative)",
"nova": "Nova (Friendly)",
"shimmer": "Shimmer (Warm)"
}
def process_video(video_file: gr.Video, api_key: str, prompt_template: str, voice_choice: str, progress: Optional[gr.Progress] = None) -> tuple[str, str]:
"""Process video with given parameters. Creates new Pixeltable instance for each request."""
try:
if not video_file or not api_key:
return "Please provide both video file and API key.", None
# Set API key
os.environ['OPENAI_API_KEY'] = api_key
video_path = video_file.name if hasattr(video_file, 'name') else str(video_file)
# Check file size
file_size = os.path.getsize(video_path) / (1024 * 1024)
if file_size > MAX_VIDEO_SIZE_MB:
return f"Error: Video file size ({file_size:.1f}MB) exceeds limit of {MAX_VIDEO_SIZE_MB}MB", None
if progress:
progress(0.1, desc="Initializing...")
# Create unique directory for this processing session
session_id = datetime.now().strftime('%Y%m%d_%H%M%S')
dir_name = f'video_processor_{session_id}'
# Initialize Pixeltable
pxt.drop_dir(dir_name, force=True)
pxt.create_dir(dir_name)
# Create main video table
video_table = pxt.create_table(
f'{dir_name}.videos',
{
"video": pxt.VideoType(nullable=True),
"timestamp": pxt.TimestampType(),
}
)
# Create frames view
frames_view = pxt.create_view(
f'{dir_name}.frames',
video_table,
iterator=FrameIterator.create(video=video_table.video, fps=1)
)
frames_view['encoded_frame'] = image.b64_encode(frames_view.frame)
if progress:
progress(0.2, desc="Processing video...")
# Insert video
video_table.insert([{
"video": video_path,
"timestamp": datetime.now(),
}])
if progress:
progress(0.4, desc="Extracting frames...")
# Get frames
frames = frames_view.select(frames_view.encoded_frame).collect()
frame_list = [f["encoded_frame"] for f in frames]
def select_representative_frames(frames: list, num_frames: int = MAX_FRAMES) -> list:
total_frames = len(frames)
if total_frames <= num_frames:
return frames
interval = total_frames / num_frames
selected_indices = [math.floor(i * interval) for i in range(num_frames)]
return [frames[i] for i in selected_indices]
selected_frames = select_representative_frames(frame_list)
if progress:
progress(0.6, desc="Analyzing with GPT-4 Vision...")
def create_frame_content(frames: list) -> list:
content = [
{
"type": "text",
"text": "This is a sequence of frames from a video. Please analyze the overall action and content across all frames:"
}
]
for i, frame in enumerate(frames, 1):
content.extend([
{
"type": "text",
"text": f"Frame {i}:"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{frame}"
}
}
])
return content
# Create frame content and generate description
frame_content = create_frame_content(selected_frames)
template = PROMPT_TEMPLATES[prompt_template]
messages = [
{
'role': 'system',
'content': template["system_prompt"]
},
{
'role': 'user',
'content': frame_content
}
]
video_table['response'] = openai.chat_completions(
messages=messages,
model='gpt-4o',
max_tokens=500
)
video_table['content'] = video_table.response.choices[0].message.content.astype(pxt.StringType())
if progress:
progress(0.8, desc="Generating audio...")
# Generate voiceover
@pxt.udf
def generate_voiceover(script: str, voice: str) -> str:
try:
response = requests.post(
"https://api.openai.com/v1/audio/speech",
headers={"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"},
json={
"model": "tts-1",
"input": script,
"voice": voice,
}
)
if response.status_code != 200:
raise Exception(f"TTS API error: {response.status_code} - {response.text}")
# Create temp file in system temp directory
temp_dir = tempfile.gettempdir()
temp_audio_path = os.path.join(temp_dir, f"voiceover_{session_id}.mp3")
with open(temp_audio_path, 'wb') as f:
f.write(response.content)
return temp_audio_path
except Exception as e:
print(f"Error generating audio: {e}")
return None
# Generate audio and get results
video_table['audio_path'] = generate_voiceover(video_table.content, voice_choice)
results = video_table.select(
video_table.content,
video_table.audio_path
).tail(1)
if progress:
progress(1.0, desc="Processing complete!")
# Clean up
try:
pxt.drop_dir(dir_name, force=True)
except Exception as e:
print(f"Warning: Could not clean up directory {dir_name}: {e}")
return (
results['content'][0], # Generated text content
results['audio_path'][0] # Audio file path
)
except Exception as e:
print(f"Error processing video: {e}")
return f"Error processing video: {str(e)}", None
# Gradio interface
def create_interface():
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header
gr.Markdown(
"""
<div style="text-align: left; margin-bottom: 2rem;">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 200px; margin-bottom: 1rem;" />
<h1>πŸŽ₯ AI Video Analyzer: Custom GPT-4 Analysis & TTS Narration</h1>
<p>Convert videos into rich narratives with 5 analysis styles - from Christopher Nolan-style cinematic breakdowns to David Attenborough documentary narrations.</p>
</div>
"""
)
# Disclaimer with Whisper reference
gr.HTML(
"""
<div style="background-color: #FFF3CD; border: 1px solid #FF7D04; padding: 1rem; margin: 1rem 0; border-radius: 4px;">
<p style="margin: 0; color: #013056;">
⚠️ <strong>Notice:</strong> This application requires an OpenAI API key and uses the following services:
<ul style="margin-top: 0.5rem;">
<li>GPT-4 Vision API for video analysis</li>
<li>TTS API for audio generation</li>
</ul>
Please be aware of associated API costs. For pricing information, visit
<a href="https://openai.com/pricing" target="_blank" style="color: #856404; text-decoration: underline;">OpenAI's pricing page</a>.
<br><br>
This application does not process audio/transcripts. If you need audio transcription and analysis, check out our
<a href="https://huggingface.co/spaces/Pixeltable/Call-Analysis-AI-Tool" target="_blank" style="color: #856404; text-decoration: underline;">
Call Analysis AI Tool</a> which uses Whisper for audio processing.
</p>
</div>
"""
)
# Information sections side by side
with gr.Row():
with gr.Column():
with gr.Accordion("What does it do?", open=True):
gr.Markdown("""
- πŸŽ₯ Analyze video content using GPT-4 Vision
- πŸ“ Generate detailed descriptions and narrations
- 🎧 Create professional voiceovers using OpenAI's TTS
- πŸ”„ Process up to 5 key frames from your video
""")
with gr.Column():
with gr.Accordion("How to use", open=True):
gr.Markdown("""
1. Enter your OpenAI API key
2. Upload a video file (max 35MB)
3. Choose your preferred analysis style and voice
5. Click "Process Video" and wait for results
""")
# Main interface
with gr.Row():
with gr.Column():
# Configuration controls - side by side
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password"
)
# Video upload below configuration
video_input = gr.Video(
label=f"Upload Video (max {MAX_VIDEO_SIZE_MB}MB)",
interactive=True
)
process_btn = gr.Button("🎬 Process Video", variant="primary")
gr.Markdown("""
<h4>Click one of the examples below to get started:</h4>
"""
)
gr.Examples(
examples=[["example1.mp4"], ["example2.mp4"]],
inputs=[video_input]
)
# Results column
with gr.Column():
prompt_template = gr.Dropdown(
choices=list(PROMPT_TEMPLATES.keys()),
value="descriptive",
label="Analysis Style",
info="Choose analysis style"
)
voice_choice = gr.Dropdown(
choices=list(VOICE_OPTIONS.keys()),
value="onyx",
label="Voice Selection",
info="Select the voice for your narration"
)
with gr.Tabs():
with gr.TabItem("πŸ“ Analysis"):
content_output = gr.Textbox(
label="Generated Content",
lines=10
)
with gr.TabItem("🎧 Audio"):
audio_output = gr.Audio(
label="Generated Voiceover",
type="filepath"
)
# Footer
gr.HTML(
"""
<div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e5e7eb;">
<div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem;">
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">πŸš€ Built with Pixeltable</h4>
<p style="margin: 0.5rem 0; color: #6b7280;">
Open Source AI infrastructure for intelligent applications
</p>
</div>
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">πŸ”— Resources</h4>
<div style="display: flex; gap: 1.5rem; margin-top: 0.5rem;">
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none;">
GitHub
</a>
<a href="https://docs.pixeltable.com" target="_blank" style="color: #4F46E5; text-decoration: none;">
Documentation
</a>
</div>
</div>
</div>
</div>
"""
)
# Connect the process button
process_btn.click(
fn=process_video,
inputs=[video_input, api_key, prompt_template, voice_choice],
outputs=[content_output, audio_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()