Hugging_Space / app.py
Pippoz's picture
Update app.py
6d82038
raw
history blame
1.12 kB
import streamlit as st
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
@st.cache(allow_output_mutation=True)
def define_model():
model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype=torch.float16).cuda()
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b", use_fast=False)
return model, tokenizer
@st.cache(allow_output_mutation=True)
def opt_model(prompt, model, tokenizer, num_sequences = 1, max_length = 50):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
generated_ids = model.generate(input_ids, num_return_sequences=num_sequences, max_length=max_length)
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return answer
model, tokenizer = define_model()
prompt= st.text_area('Your prompt here',
'''Hello, I'm am conscious and''')
answer = opt_model(prompt, model, tokenizer,)
#lst = ['ciao come stai sjfsbd dfhsdf fuahfuf feuhfu wefwu ']
lst = ' '.join(answer)
t = st.empty()
for i in range(len(lst)):
t.markdown("### %s..." % lst[0:i])
time.sleep(0.04)