Spaces:
Runtime error
Runtime error
GLIP-BLIP-Object-Detection-VQA
/
maskrcnn_benchmark
/modeling
/balanced_positive_negative_sampler.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import torch | |
class BalancedPositiveNegativeSampler(object): | |
""" | |
This class samples batches, ensuring that they contain a fixed proportion of positives | |
""" | |
def __init__(self, batch_size_per_image, positive_fraction): | |
""" | |
Arguments: | |
batch_size_per_image (int): number of elements to be selected per image | |
positive_fraction (float): percentace of positive elements per batch | |
""" | |
self.batch_size_per_image = batch_size_per_image | |
self.positive_fraction = positive_fraction | |
def __call__(self, matched_idxs): | |
""" | |
Arguments: | |
matched idxs: list of tensors containing -1, 0 or positive values. | |
Each tensor corresponds to a specific image. | |
-1 values are ignored, 0 are considered as negatives and > 0 as | |
positives. | |
Returns: | |
pos_idx (list[tensor]) | |
neg_idx (list[tensor]) | |
Returns two lists of binary masks for each image. | |
The first list contains the positive elements that were selected, | |
and the second list the negative example. | |
""" | |
pos_idx = [] | |
neg_idx = [] | |
for matched_idxs_per_image in matched_idxs: | |
positive = torch.nonzero(matched_idxs_per_image >= 1).squeeze(1) | |
negative = torch.nonzero(matched_idxs_per_image == 0).squeeze(1) | |
num_pos = int(self.batch_size_per_image * self.positive_fraction) | |
# protect against not enough positive examples | |
num_pos = min(positive.numel(), num_pos) | |
num_neg = self.batch_size_per_image - num_pos | |
# protect against not enough negative examples | |
num_neg = min(negative.numel(), num_neg) | |
# randomly select positive and negative examples | |
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] | |
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] | |
pos_idx_per_image = positive[perm1] | |
neg_idx_per_image = negative[perm2] | |
# create binary mask from indices | |
pos_idx_per_image_mask = torch.zeros_like( | |
matched_idxs_per_image, dtype=torch.bool | |
) | |
neg_idx_per_image_mask = torch.zeros_like( | |
matched_idxs_per_image, dtype=torch.bool | |
) | |
pos_idx_per_image_mask[pos_idx_per_image] = 1 | |
neg_idx_per_image_mask[neg_idx_per_image] = 1 | |
pos_idx.append(pos_idx_per_image_mask) | |
neg_idx.append(neg_idx_per_image_mask) | |
return pos_idx, neg_idx | |