Pinwheel's picture
HF Demo
128757a
raw
history blame
3.27 kB
import numpy as np
import torch
import torch.nn as nn
from collections import OrderedDict
def tf2th(conv_weights):
"""Possibly convert HWIO to OIHW."""
if conv_weights.ndim == 4:
conv_weights = conv_weights.transpose([3, 2, 0, 1])
return torch.from_numpy(conv_weights)
def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg):
import re
layer_keys = sorted(state_dict.keys())
for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1):
if not stage_with_dcn:
continue
for old_key in layer_keys:
pattern = ".*block{}.*conv2.*".format(ix)
r = re.match(pattern, old_key)
if r is None:
continue
for param in ["weight", "bias"]:
if old_key.find(param) is -1:
continue
if 'unit01' in old_key:
continue
new_key = old_key.replace(
"conv2.{}".format(param), "conv2.conv.{}".format(param)
)
print("pattern: {}, old_key: {}, new_key: {}".format(
pattern, old_key, new_key
))
# Calculate SD conv weight
w = state_dict[old_key]
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
w = (w - m) / torch.sqrt(v + 1e-10)
state_dict[new_key] = w
del state_dict[old_key]
return state_dict
def load_big_format(cfg, f):
model = OrderedDict()
weights = np.load(f)
cmap = {'a':1, 'b':2, 'c':3}
for key, val in weights.items():
old_key = key.replace('resnet/', '')
if 'root_block' in old_key:
new_key = 'root.conv.weight'
elif '/proj/standardized_conv2d/kernel' in old_key:
key_pattern = old_key.replace('/proj/standardized_conv2d/kernel', '').replace('resnet/', '')
bname, uname, cidx = key_pattern.split('/')
new_key = '{}.downsample.{}.conv{}.weight'.format(bname,uname,cmap[cidx])
elif '/standardized_conv2d/kernel' in old_key:
key_pattern = old_key.replace('/standardized_conv2d/kernel', '').replace('resnet/', '')
bname, uname, cidx = key_pattern.split('/')
new_key = '{}.{}.conv{}.weight'.format(bname,uname,cmap[cidx])
elif '/group_norm/gamma' in old_key:
key_pattern = old_key.replace('/group_norm/gamma', '').replace('resnet/', '')
bname, uname, cidx = key_pattern.split('/')
new_key = '{}.{}.gn{}.weight'.format(bname,uname,cmap[cidx])
elif '/group_norm/beta' in old_key:
key_pattern = old_key.replace('/group_norm/beta', '').replace('resnet/', '')
bname, uname, cidx = key_pattern.split('/')
new_key = '{}.{}.gn{}.bias'.format(bname,uname,cmap[cidx])
else:
print('Unknown key {}'.format(old_key))
continue
print('Map {} -> {}'.format(key, new_key))
model[new_key] = tf2th(val)
model = _rename_conv_weights_for_deformable_conv_layers(model, cfg)
return dict(model=model)