Spaces:
Runtime error
Runtime error
"""Mixup detection dataset wrapper.""" | |
from __future__ import absolute_import | |
import numpy as np | |
import torch | |
import torch.utils.data as data | |
class MixupDetection(data.Dataset): | |
"""Detection dataset wrapper that performs mixup for normal dataset. | |
Parameters | |
---------- | |
dataset : mx.gluon.data.Dataset | |
Gluon dataset object. | |
mixup : callable random generator, e.g. np.random.uniform | |
A random mixup ratio sampler, preferably a random generator from numpy.random | |
A random float will be sampled each time with mixup(*args). | |
Use None to disable. | |
*args : list | |
Additional arguments for mixup random sampler. | |
""" | |
def __init__(self, dataset, mixup=None, preproc=None, *args): | |
super().__init__(dataset.input_dim) | |
self._dataset = dataset | |
self.preproc = preproc | |
self._mixup = mixup | |
self._mixup_args = args | |
def set_mixup(self, mixup=None, *args): | |
"""Set mixup random sampler, use None to disable. | |
Parameters | |
---------- | |
mixup : callable random generator, e.g. np.random.uniform | |
A random mixup ratio sampler, preferably a random generator from numpy.random | |
A random float will be sampled each time with mixup(*args) | |
*args : list | |
Additional arguments for mixup random sampler. | |
""" | |
self._mixup = mixup | |
self._mixup_args = args | |
def __len__(self): | |
return len(self._dataset) | |
def __getitem__(self, idx): | |
self._dataset._input_dim = self.input_dim | |
# first image | |
img1, label1, _, _= self._dataset.pull_item(idx) | |
lambd = 1 | |
# draw a random lambda ratio from distribution | |
if self._mixup is not None: | |
lambd = max(0, min(1, self._mixup(*self._mixup_args))) | |
if lambd >= 1: | |
weights1 = np.ones((label1.shape[0], 1)) | |
label1 = np.hstack((label1, weights1)) | |
height, width, _ = img1.shape | |
img_info = (width, height) | |
if self.preproc is not None: | |
img_o, target_o = self.preproc(img1, label1, self.input_dim) | |
return img_o, target_o, img_info, idx | |
# second image | |
idx2 = int(np.random.choice(np.delete(np.arange(len(self)), idx))) | |
img2, label2, _, _ = self._dataset.pull_item(idx2) | |
# mixup two images | |
height = max(img1.shape[0], img2.shape[0]) | |
width = max(img1.shape[1], img2.shape[1]) | |
mix_img = np.zeros((height, width, 3),dtype=np.float32) | |
mix_img[:img1.shape[0], :img1.shape[1], :] = img1.astype(np.float32) * lambd | |
mix_img[:img2.shape[0], :img2.shape[1], :] += img2.astype(np.float32) * (1. - lambd) | |
mix_img = mix_img.astype(np.uint8) | |
y1 = np.hstack((label1, np.full((label1.shape[0], 1), lambd))) | |
y2 = np.hstack((label2, np.full((label2.shape[0], 1), 1. - lambd))) | |
mix_label = np.vstack((y1, y2)) | |
if self.preproc is not None: | |
mix_img, padded_labels = self.preproc(mix_img, mix_label, self.input_dim) | |
img_info = (width, height) | |
return mix_img, padded_labels, img_info , idx | |
def pull_item(self, idx): | |
self._dataset._input_dim = self.input_dim | |
# first image | |
img1, label1, _, _= self._dataset.pull_item(idx) | |
lambd = 1 | |
# draw a random lambda ratio from distribution | |
if self._mixup is not None: | |
lambd = max(0, min(1, self._mixup(*self._mixup_args))) | |
if lambd >= 1: | |
weights1 = np.ones((label1.shape[0], 1)) | |
label1 = np.hstack((label1, weights1)) | |
height, width, _ = img1.shape | |
img_info = (width, height) | |
if self.preproc is not None: | |
img_o, target_o = self.preproc(img1, label1, self.input_dim) | |
return img_o, target_o, img_info, idx | |
# second image | |
idx2 = int(np.random.choice(np.delete(np.arange(len(self)), idx))) | |
img2, label2 = self._dataset.pull_item(idx2) | |
# mixup two images | |
height = max(img1.shape[0], img2.shape[0]) | |
width = max(img1.shape[1], img2.shape[1]) | |
mix_img = np.zeros((height, width, 3),dtype=np.float32) | |
mix_img[:img1.shape[0], :img1.shape[1], :] = img1.astype(np.float32) * lambd | |
mix_img[:img2.shape[0], :img2.shape[1], :] += img2.astype(np.float32) * (1. - lambd) | |
mix_img = mix_img.astype(np.uint8) | |
y1 = np.hstack((label1, np.full((label1.shape[0], 1), lambd))) | |
y2 = np.hstack((label2, np.full((label2.shape[0], 1), 1. - lambd))) | |
mix_label = np.vstack((y1, y2)) | |
if self.preproc is not None: | |
mix_img, padded_labels = self.preproc(mix_img, mix_label, self.input_dim) | |
img_info = (width, height) | |
return mix_img, padded_labels, img_info , idx | |