Spaces:
Runtime error
Runtime error
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
// TODO make it in a common file | |
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ | |
i += blockDim.x * gridDim.x) | |
template <typename T> | |
__global__ void RoIPoolFForward(const int nthreads, const T* bottom_data, | |
const T spatial_scale, const int channels, const int height, | |
const int width, const int pooled_height, const int pooled_width, | |
const T* bottom_rois, T* top_data, int* argmax_data) { | |
CUDA_1D_KERNEL_LOOP(index, nthreads) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* offset_bottom_rois = bottom_rois + n * 5; | |
int roi_batch_ind = offset_bottom_rois[0]; | |
int roi_start_w = round(offset_bottom_rois[1] * spatial_scale); | |
int roi_start_h = round(offset_bottom_rois[2] * spatial_scale); | |
int roi_end_w = round(offset_bottom_rois[3] * spatial_scale); | |
int roi_end_h = round(offset_bottom_rois[4] * spatial_scale); | |
// Force malformed ROIs to be 1x1 | |
int roi_width = max(roi_end_w - roi_start_w + 1, 1); | |
int roi_height = max(roi_end_h - roi_start_h + 1, 1); | |
T bin_size_h = static_cast<T>(roi_height) | |
/ static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) | |
/ static_cast<T>(pooled_width); | |
int hstart = static_cast<int>(floor(static_cast<T>(ph) | |
* bin_size_h)); | |
int wstart = static_cast<int>(floor(static_cast<T>(pw) | |
* bin_size_w)); | |
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) | |
* bin_size_h)); | |
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) | |
* bin_size_w)); | |
// Add roi offsets and clip to input boundaries | |
hstart = min(max(hstart + roi_start_h, 0), height); | |
hend = min(max(hend + roi_start_h, 0), height); | |
wstart = min(max(wstart + roi_start_w, 0), width); | |
wend = min(max(wend + roi_start_w, 0), width); | |
bool is_empty = (hend <= hstart) || (wend <= wstart); | |
// Define an empty pooling region to be zero | |
T maxval = is_empty ? 0 : -FLT_MAX; | |
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd | |
int maxidx = -1; | |
const T* offset_bottom_data = | |
bottom_data + (roi_batch_ind * channels + c) * height * width; | |
for (int h = hstart; h < hend; ++h) { | |
for (int w = wstart; w < wend; ++w) { | |
int bottom_index = h * width + w; | |
if (offset_bottom_data[bottom_index] > maxval) { | |
maxval = offset_bottom_data[bottom_index]; | |
maxidx = bottom_index; | |
} | |
} | |
} | |
top_data[index] = maxval; | |
argmax_data[index] = maxidx; | |
} | |
} | |
template <typename T> | |
__global__ void RoIPoolFBackward(const int nthreads, const T* top_diff, | |
const int* argmax_data, const int num_rois, const T spatial_scale, | |
const int channels, const int height, const int width, | |
const int pooled_height, const int pooled_width, T* bottom_diff, | |
const T* bottom_rois) { | |
CUDA_1D_KERNEL_LOOP(index, nthreads) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* offset_bottom_rois = bottom_rois + n * 5; | |
int roi_batch_ind = offset_bottom_rois[0]; | |
int bottom_offset = (roi_batch_ind * channels + c) * height * width; | |
int top_offset = (n * channels + c) * pooled_height * pooled_width; | |
const T* offset_top_diff = top_diff + top_offset; | |
T* offset_bottom_diff = bottom_diff + bottom_offset; | |
const int* offset_argmax_data = argmax_data + top_offset; | |
int argmax = offset_argmax_data[ph * pooled_width + pw]; | |
if (argmax != -1) { | |
atomicAdd( | |
offset_bottom_diff + argmax, | |
static_cast<T>(offset_top_diff[ph * pooled_width + pw])); | |
} | |
} | |
} | |
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width) { | |
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); | |
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); | |
auto num_rois = rois.size(0); | |
auto channels = input.size(1); | |
auto height = input.size(2); | |
auto width = input.size(3); | |
auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options()); | |
auto output_size = num_rois * pooled_height * pooled_width * channels; | |
auto argmax = at::zeros({num_rois, channels, pooled_height, pooled_width}, input.options().dtype(at::kInt)); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
dim3 grid(std::min(THCCeilDiv(output_size, 512L), 4096L)); | |
dim3 block(512); | |
if (output.numel() == 0) { | |
THCudaCheck(cudaGetLastError()); | |
return std::make_tuple(output, argmax); | |
} | |
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIPool_forward", [&] { | |
RoIPoolFForward<scalar_t><<<grid, block, 0, stream>>>( | |
output_size, | |
input.contiguous().data_ptr<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
rois.contiguous().data_ptr<scalar_t>(), | |
output.data_ptr<scalar_t>(), | |
argmax.data_ptr<int>()); | |
}); | |
THCudaCheck(cudaGetLastError()); | |
return std::make_tuple(output, argmax); | |
} | |
// TODO remove the dependency on input and use instead its sizes -> save memory | |
at::Tensor ROIPool_backward_cuda(const at::Tensor& grad, | |
const at::Tensor& input, | |
const at::Tensor& rois, | |
const at::Tensor& argmax, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int batch_size, | |
const int channels, | |
const int height, | |
const int width) { | |
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); | |
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); | |
// TODO add more checks | |
auto num_rois = rois.size(0); | |
auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options()); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
dim3 grid(std::min(THCCeilDiv(grad.numel(), 512L), 4096L)); | |
dim3 block(512); | |
// handle possibly empty gradients | |
if (grad.numel() == 0) { | |
THCudaCheck(cudaGetLastError()); | |
return grad_input; | |
} | |
AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "ROIPool_backward", [&] { | |
RoIPoolFBackward<scalar_t><<<grid, block, 0, stream>>>( | |
grad.numel(), | |
grad.contiguous().data_ptr<scalar_t>(), | |
argmax.data_ptr<int>(), | |
num_rois, | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
grad_input.data_ptr<scalar_t>(), | |
rois.contiguous().data_ptr<scalar_t>()); | |
}); | |
THCudaCheck(cudaGetLastError()); | |
return grad_input; | |
} | |