Spaces:
Runtime error
Runtime error
""" | |
This file contains primitives for multi-gpu communication. | |
This is useful when doing distributed training. | |
""" | |
import pickle | |
import time | |
import functools | |
import logging | |
import torch | |
import torch.distributed as dist | |
import numpy as np | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def synchronize(): | |
""" | |
Helper function to synchronize (barrier) among all processes when | |
using distributed training | |
""" | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
if world_size == 1: | |
return | |
dist.barrier() | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to("cuda") | |
# obtain Tensor size of each rank | |
local_size = torch.LongTensor([tensor.numel()]).to("cuda") | |
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
""" | |
Args: | |
input_dict (dict): all the values will be reduced | |
average (bool): whether to do average or sum | |
Reduce the values in the dictionary from all processes so that process with rank | |
0 has the averaged results. Returns a dict with the same fields as | |
input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.reduce(values, dst=0) | |
if dist.get_rank() == 0 and average: | |
# only main process gets accumulated, so only divide by | |
# world_size in this case | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |
def broadcast_data(data): | |
if not torch.distributed.is_initialized(): | |
return data | |
rank = dist.get_rank() | |
if rank == 0: | |
data_tensor = torch.tensor(data + [0], device="cuda") | |
else: | |
data_tensor = torch.tensor(data + [1], device="cuda") | |
torch.distributed.broadcast(data_tensor, 0) | |
while data_tensor.cpu().numpy()[-1] == 1: | |
time.sleep(1) | |
return data_tensor.cpu().numpy().tolist()[:-1] | |
def reduce_sum(tensor): | |
if get_world_size() <= 1: | |
return tensor | |
tensor = tensor.clone() | |
dist.all_reduce(tensor, op=dist.ReduceOp.SUM) | |
return tensor | |
def shared_random_seed(): | |
""" | |
Returns: | |
int: a random number that is the same across all workers. | |
If workers need a shared RNG, they can use this shared seed to | |
create one. | |
All workers must call this function, otherwise it will deadlock. | |
""" | |
ints = np.random.randint(2 ** 31) | |
all_ints = all_gather(ints) | |
return all_ints[0] |