Pinwheel's picture
HF Demo
128757a
raw
history blame
4.03 kB
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#include "cpu/vision.h"
template <typename scalar_t>
std::pair<at::Tensor, at::Tensor> soft_nms_cpu_kernel(const at::Tensor& dets,
const at::Tensor& scores,
const float threshold,
const float sigma) {
AT_ASSERTM(!dets.device().is_cuda(), "dets must be a CPU tensor");
AT_ASSERTM(!scores.device().is_cuda(), "scores must be a CPU tensor");
AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores");
if (dets.numel() == 0) {
return std::make_pair(at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU)),
at::empty({0}, scores.options().dtype(at::kFloat).device(at::kCPU)));
}
auto x1_t = dets.select(1, 0).contiguous();
auto y1_t = dets.select(1, 1).contiguous();
auto x2_t = dets.select(1, 2).contiguous();
auto y2_t = dets.select(1, 3).contiguous();
auto scores_t = scores.clone();
at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1);
auto ndets = dets.size(0);
auto inds_t = at::arange(ndets, dets.options().dtype(at::kLong).device(at::kCPU));
auto x1 = x1_t.data_ptr<scalar_t>();
auto y1 = y1_t.data_ptr<scalar_t>();
auto x2 = x2_t.data_ptr<scalar_t>();
auto y2 = y2_t.data_ptr<scalar_t>();
auto s = scores_t.data_ptr<scalar_t>();
auto inds = inds_t.data_ptr<int64_t>();
auto areas = areas_t.data_ptr<scalar_t>();
for (int64_t i = 0; i < ndets; i++) {
auto ix1 = x1[i];
auto iy1 = y1[i];
auto ix2 = x2[i];
auto iy2 = y2[i];
auto is = s[i];
auto ii = inds[i];
auto iarea = areas[i];
auto maxpos = scores_t.slice(0, i, ndets).argmax().item<int64_t>() + i;
// add max box as a detection
x1[i] = x1[maxpos];
y1[i] = y1[maxpos];
x2[i] = x2[maxpos];
y2[i] = y2[maxpos];
s[i] = s[maxpos];
inds[i] = inds[maxpos];
areas[i] = areas[maxpos];
// swap ith box with position of max box
x1[maxpos] = ix1;
y1[maxpos] = iy1;
x2[maxpos] = ix2;
y2[maxpos] = iy2;
s[maxpos] = is;
inds[maxpos] = ii;
areas[maxpos] = iarea;
ix1 = x1[i];
iy1 = y1[i];
ix2 = x2[i];
iy2 = y2[i];
iarea = areas[i];
// NMS iterations, note that ndets changes if detection boxes
// fall below threshold
for (int64_t j = i + 1; j < ndets; j++) {
auto xx1 = std::max(ix1, x1[j]);
auto yy1 = std::max(iy1, y1[j]);
auto xx2 = std::min(ix2, x2[j]);
auto yy2 = std::min(iy2, y2[j]);
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1 + 1);
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1 + 1);
auto inter = w * h;
auto ovr = inter / (iarea + areas[j] - inter);
s[j] = s[j] * std::exp(- std::pow(ovr, 2.0) / sigma);
// if box score falls below threshold, discard the box by
// swapping with last box update ndets
if (s[j] < threshold) {
x1[j] = x1[ndets - 1];
y1[j] = y1[ndets - 1];
x2[j] = x2[ndets - 1];
y2[j] = y2[ndets - 1];
s[j] = s[ndets - 1];
inds[j] = inds[ndets - 1];
areas[j] = areas[ndets - 1];
j--;
ndets--;
}
}
}
return std::make_pair(inds_t.slice(0, 0, ndets), scores_t.slice(0, 0, ndets));
}
std::pair<at::Tensor, at::Tensor> soft_nms_cpu(const at::Tensor& dets,
const at::Tensor& scores,
const float threshold,
const float sigma) {
std::pair<at::Tensor, at::Tensor> result;
AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "soft_nms", [&] {
result = soft_nms_cpu_kernel<scalar_t>(dets, scores, threshold, sigma);
});
return result;
}