Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| import torch | |
| import torch.nn.functional as F | |
| #Initializing the tuned BERT model and tokenizer. | |
| model = AutoModelForSequenceClassification.from_pretrained("BERTTuned") | |
| tokenizer = AutoTokenizer.from_pretrained("Tokenizer") | |
| def predict_sentiment(text): | |
| #Tokenizing the input text and preparing it for the model. | |
| inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors="pt") | |
| #Generating predictions from the model. | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| #Converting the model logits to probabilities for easier interpretation. | |
| probabilities = F.softmax(logits, dim=1).squeeze() | |
| #Mapping the models output to something readable. | |
| sentiment_mapping = {0: "Negative", 1: "Positive"} | |
| predicted_class_index = torch.argmax(probabilities).item() | |
| predicted_probability = probabilities[predicted_class_index].item() | |
| predicted_sentiment = sentiment_mapping[predicted_class_index] | |
| #Returning the predicted sentiment and probability. | |
| return predicted_sentiment, f"{predicted_probability:.4f}" | |
| #Setting up a Gradio interface. | |
| iface = gr.Interface( | |
| fn=predict_sentiment, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), | |
| outputs=[gr.Label(label="Predicted Sentiment"), gr.Textbox(label="Probability")], | |
| title="Sentiment Analysis", | |
| description="Enter a text to predict its sentiment.", | |
| allow_flagging="never" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |