Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import requests | |
def hex_to_rgb(hex_code): | |
# Remove the '#' symbol if present | |
hex_code = hex_code.lstrip('#') | |
# Convert the hex code to RGB | |
return tuple(int(hex_code[i:i+2], 16) for i in (0, 2, 4)) | |
def crop_image(image, crop_top_percentage, crop_bottom_percentage): | |
height, width = image.shape[:2] | |
# Calculate the number of pixels to crop from the top and bottom as a percentage of the image height | |
crop_top = int(height * crop_top_percentage / 100) | |
crop_bottom = int(height * crop_bottom_percentage / 100) | |
# Crop the input image | |
cropped_image = image[crop_top:height - crop_bottom, :] | |
return cropped_image | |
def resize_and_overlay_image(input_image, reduction_percentage, shift_percentage_lr, shift_percentage_ud, background_color, crop_top_percentage, crop_bottom_percentage): | |
# Check if the input image is empty | |
if input_image.size == 0: | |
return None | |
img = np.array(input_image) | |
# Check if the image has shape information | |
if img.ndim < 2: | |
return None | |
# Crop the input image | |
cropped_img = crop_image(img, crop_top_percentage, crop_bottom_percentage) | |
# Get the dimensions of the cropped image | |
height, width = cropped_img.shape[:2] | |
# Calculate the new dimensions based on the reduction percentage | |
new_height = int(height * reduction_percentage / 100) | |
new_width = int(width * reduction_percentage / 100) | |
# Calculate the shift values as a percentage of the image dimensions | |
shift_x = int(width * shift_percentage_lr / 100) | |
shift_y = int(height * shift_percentage_ud / 100) | |
# Create a new background image with the same dimensions as the input image and specified color | |
background_rgb = hex_to_rgb(background_color) | |
background_img = np.ones_like(img) * background_rgb | |
# Resize the cropped image while maintaining aspect ratio | |
aspect_ratio = width / height | |
if new_width / new_height > aspect_ratio: | |
resized_height = new_height | |
resized_width = int(new_height * aspect_ratio) | |
else: | |
resized_width = new_width | |
resized_height = int(new_width / aspect_ratio) | |
resized_img = cv2.resize(cropped_img, (resized_width, resized_height)) | |
# Calculate the position to overlay the resized image on the background image | |
x = int((width - resized_width) / 2) + shift_x | |
y = int((height - resized_height) / 2) + shift_y | |
# Overlay the resized image on the background image | |
background_img[y:y + resized_height, x:x + resized_width] = resized_img | |
# Return the resulting image as a NumPy array | |
return background_img | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=resize_and_overlay_image, | |
inputs=[ | |
gr.inputs.Image(type="pil", label="Input Image"), | |
gr.inputs.Slider(minimum=30, maximum=100, step=5, default=80, label="Percentage of Original"), | |
gr.inputs.Slider(minimum=-30, maximum=30, step=1, default=0, label="Shift Left / Right (%)"), | |
gr.inputs.Slider(minimum=-30, maximum=30, step=1, default=0, label="Shift Up / Down (%)"), | |
gr.inputs.Textbox(default="#ffffff", label="Background Color (Hex Code)"), | |
gr.inputs.Slider(minimum=0, maximum=25, step=1, default=0, label="Crop Top (%)"), | |
gr.inputs.Slider(minimum=0, maximum=25, step=1, default=0, label="Crop Bottom (%)") | |
], | |
outputs=gr.outputs.Image(type="numpy", label="Result"), | |
title="Image Resizer", | |
description="Crop the input image, overlay it on a new background of the specified color, start centered, and shift it as a percentage without stretching." | |
) | |
if __name__ == "__main__": | |
iface.launch() |