Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
import pytorch_lightning as pl | |
import cv2 | |
import numpy | |
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection | |
from PIL import Image | |
import streamlit as st | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
feature_extractor = AutoFeatureExtractor.from_pretrained("hustvl/yolos-small", size=512, max_size=864) | |
id2label = {1: 'person', 2: 'rider', 3: 'car', 4: 'bus', 5: 'truck', 6: 'bike', 7: 'motor', 8: 'traffic light', 9: 'traffic sign', 10: 'train'} | |
# colors for visualization | |
colors = [ | |
[ 0, 113, 188,], | |
[216, 82, 24,], | |
[236, 176, 31,], | |
[255, 255, 0,], | |
[118, 171, 47,], | |
[ 76, 189, 237,], | |
[ 46, 155, 188,], | |
[125, 171, 141,], | |
[125, 76, 237,], | |
[ 0, 82, 216,], | |
[189, 76, 47,]] | |
class Detr(pl.LightningModule): | |
def __init__(self, lr, weight_decay): | |
super().__init__() | |
# replace COCO classification head with custom head | |
self.model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-small", | |
num_labels=len(id2label), | |
ignore_mismatched_sizes=True) | |
# see https://github.com/PyTorchLightning/pytorch-lightning/pull/1896 | |
self.lr = lr | |
self.weight_decay = weight_decay | |
def forward(self, pixel_values): | |
outputs = self.model(pixel_values=pixel_values) | |
return outputs | |
def common_step(self, batch, batch_idx): | |
pixel_values = batch["pixel_values"] | |
labels = [{k: v.to(self.device) for k, v in t.items()} for t in batch["labels"]] | |
outputs = self.model(pixel_values=pixel_values, labels=labels) | |
loss = outputs.loss | |
loss_dict = outputs.loss_dict | |
return loss, loss_dict | |
def training_step(self, batch, batch_idx): | |
loss, loss_dict = self.common_step(batch, batch_idx) | |
# logs metrics for each training_step, | |
# and the average across the epoch | |
self.log("training_loss", loss) | |
for k,v in loss_dict.items(): | |
self.log("train_" + k, v.item()) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
loss, loss_dict = self.common_step(batch, batch_idx) | |
self.log("validation_loss", loss) | |
for k,v in loss_dict.items(): | |
self.log("validation_" + k, v.item()) | |
return loss | |
def configure_optimizers(self): | |
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr, | |
weight_decay=self.weight_decay) | |
return optimizer | |
# Build model and load checkpoint | |
checkpoint = './checkpoints/epoch=1-step=2184.ckpt' | |
model_yolos = Detr.load_from_checkpoint(checkpoint, lr=2.5e-5, weight_decay=1e-4) | |
model_yolos.to(device) | |
model_yolos.eval() | |
# for output bounding box post-processing | |
def box_cxcywh_to_xyxy(x): | |
x_c, y_c, w, h = x.unbind(1) | |
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), | |
(x_c + 0.5 * w), (y_c + 0.5 * h)] | |
return torch.stack(b, dim=1) | |
def rescale_bboxes(out_bbox, size): | |
img_w, img_h = size | |
b = box_cxcywh_to_xyxy(out_bbox) | |
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) | |
return b | |
def plot_results(pil_img, prob, boxes): | |
img = numpy.asarray(pil_img) | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
cl = p.argmax() | |
c = colors[cl] | |
c1, c2 = (int(xmin), int(ymin)), (int(xmax), int(ymax)) | |
cv2.rectangle(img, c1, c2, c, thickness=2, lineType=cv2.LINE_AA) | |
cv2.putText(img, f'{id2label[cl.item()]}: {p[cl]:0.2f}', [int(xmin), int(ymin)-5], cv2.FONT_HERSHEY_SIMPLEX, 0.7, c, 2) | |
return Image.fromarray(img) | |
def generate_preds(processor, model, image): | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
preds = model(pixel_values=inputs.pixel_values) | |
return preds | |
def visualize_preds(image, preds, threshold=0.9): | |
# keep only predictions with confidence >= threshold | |
probas = preds.logits.softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > threshold | |
# convert predicted boxes from [0; 1] to image scales | |
bboxes_scaled = rescale_bboxes(preds.pred_boxes[0, keep].cpu(), image.size) | |
return plot_results(image, probas[keep], bboxes_scaled) | |
def detect(img): | |
# Run inference | |
preds = generate_preds(feature_extractor, model_yolos, img) | |
return visualize_preds(img, preds) | |
description = "Welcome to this space! 🤗this is a traffic object detector based on <a href='https://huggingface.co/docs/transformers/model_doc/yolos' style='text-decoration: underline' target='_blank'>YOLOS</a>. \n\n" + \ | |
"The model can detect following targets: 🚶♂️person, 🚴♀️rider, 🚗car, 🚌bus, 🚚truck, 🚲bike, 🏍️motor, 🚦traffic light, ⛔traffic sign, 🚄train." | |
interface = gr.Interface( | |
fn=detect, | |
inputs=[gr.Image(type="pil")], | |
outputs=gr.Image(type="pil"), | |
examples=[["./imgs/example1.jpg"], ["./imgs/example2.jpg"], ["./imgs/example3.png"]], | |
title="YOLOS for traffic object detection", | |
description=description) | |
interface.launch() | |