PIERRE CUGNET
feat(py): add a button to prevent automatic inference
1409c20
raw
history blame
3.57 kB
import streamlit as st
import os
import tensorflow as tf
from transformers import AutoTokenizer, TFBertModel
from tensorflow.keras.layers import Input, Dense
import numpy as np
import re
import emoji
import nltk
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
nltk.download('stopwords')
nltk.download('wordnet')
lmtzr = WordNetLemmatizer()
stop_words = stopwords.words("english")
max_len = 35
def clean_text(text):
# Put text into lower case
text = text.lower()
# Remove URLs
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
# Remove Hashtags
text = re.sub(r"#", "", text)
# Remove Mentions
text = re.sub(r"@\S+", "", text)
# Handling Emojis/Emoticons
text = emoji.demojize(text)
emoticons = dict()
emoticons['EMOT_SMILEY'] = [':-)', ':)', '(:', '(-:', ';p', ':-d', ':d', ]
emoticons['EMOT_LAUGH'] = [':-D', ':D', 'X-D', 'XD', 'xD']
emoticons['EMOT_LOVE'] = ['<3', ':\*', ]
emoticons['EMOT_CRY'] = [':,(', ':\'(', ':"(', ':((']
emoticons['EMOT_WINK'] = [';-)', ';)', ';-D', ';D', '(;', '(-;']
emoticons['EMOT_FROWN'] = [':-(', ':(']
for label, emot in emoticons.items():
for word in text.split():
if word in emot:
text = text.replace(word, label)
# Lemmatazation
text = ' '.join([lmtzr.lemmatize(word, 'v') for word in text.split()])
return text
st.title('Welcome to my twitter airline sentiment analysis !', anchor='center')
airline_tweet = st.text_input('Enter your english airline tweet here, press the prediction button and wait for the model to predict the sentiment of your review:', '@AmericanAirline My flight was awful, the flight was late and you lost my luggage!')
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', num_labels=2)
encoded_input = tokenizer(
text=airline_tweet,
add_special_tokens=True,
max_length=max_len,
truncation=True,
padding='max_length',
return_tensors='tf',
return_token_type_ids=False,
return_attention_mask=True,
verbose=False)
bert = TFBertModel.from_pretrained('distilbert-base-uncased', num_labels=2)
input_ids = Input(shape=(max_len,), dtype=tf.int32, name='input_ids')
input_mask = Input(shape=(max_len,), dtype=tf.int32, name='attention_mask')
bert_inputs = {'input_ids': input_ids, 'input_mask': input_mask}
embeddings = bert.bert(input_ids, attention_mask=input_mask)[0] #Here 0 is the last hidden states
out = tf.keras.layers.GlobalMaxPool1D()(embeddings)
out = Dense(512, activation='relu')(out)
out = tf.keras.layers.Dropout(0.1)(out)
# out = Dense(512, activation='relu')(out)
# Last layer
y = Dense(2, activation = 'softmax')(out) #Here 2 because we got 2 categories to predict and softmax because we want probabilities
# y = Dense(1, activation = 'sigmoid')(out)
model = tf.keras.Model(inputs=bert_inputs, outputs=y)
model.load_weights('sentiment_weights.h5')
if st.button('Predict sentiment'):
prediction = model.predict({'input_ids': encoded_input['input_ids'], 'input_mask': encoded_input['attention_mask']})
encoded_dict = {0: 'negative', 1: 'positive'}
if np.argmax(prediction) == 0:
st.write(f'Sentiment predicted : {encoded_dict[np.argmax(prediction)]}')
st.write(f'I\'m sorry you had a bad experience with our company :( , please accept our apologies')
else:
st.write(f'Sentiment predicted : {encoded_dict[np.argmax(prediction)]}')
st.write('Glad your flight was good ! Hope to see you soon :)')