Spaces:
Build error
Build error
import os, sys | |
import subprocess | |
import argparse | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
subprocess.run(["git", "submodule", "update", "--init", "--recursive"]) | |
print(os.getcwd()) | |
print(os.listdir('.')) | |
sys.path.append("./rome") | |
from src.utils import args as args_utils | |
from src.utils.processing import process_black_shape, tensor2image | |
# loading models ---- create model repo | |
from huggingface_hub import hf_hub_url | |
default_modnet_path = hf_hub_url('Pie31415/rome','modnet_photographic_portrait_matting.ckpt') | |
default_model_path = hf_hub_url('Pie31415/rome','models/rome.pth') | |
# parser configurations | |
parser = argparse.ArgumentParser(conflict_handler='resolve') | |
parser.add_argument('--save_dir', default='.', type=str) | |
parser.add_argument('--save_render', default='True', type=args_utils.str2bool, choices=[True, False]) | |
parser.add_argument('--model_checkpoint', default=default_model_path, type=str) | |
parser.add_argument('--modnet_path', default=default_modnet_path, type=str) | |
parser.add_argument('--random_seed', default=0, type=int) | |
parser.add_argument('--debug', action='store_true') | |
parser.add_argument('--verbose', default='False', type=args_utils.str2bool, choices=[True, False]) | |
args, _ = parser.parse_known_args() | |
parser = importlib.import_module(f'src.rome').ROME.add_argparse_args(parser) | |
args = parser.parse_args() | |
args.deca_path = 'DECA' | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
from infer import Infer | |
infer = Infer(args) | |
infer = infer.to(device) | |
def predict(source_img, driver_img): | |
out = infer.evaluate(source_img, driver_img, crop_center=False) | |
res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(), | |
out['source_information']['data_dict']['target_img'][0].cpu(), | |
out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2)) | |
return res[..., ::-1] | |
import gradio as gr | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Image(type="pil") | |
], | |
outputs=gr.Image(), | |
examples=[]).launch() |