rome / app.py
Pie31415's picture
updated app
59672e3
raw
history blame
2.01 kB
import os, sys
import argparse
import numpy as np
import torch
import matplotlib.pyplot as plt
from PIL import Image
sys.path.append("./rome")
from src.utils import args as args_utils
from src.utils.processing import process_black_shape, tensor2image
# loading models ---- create model repo
from huggingface_hub import hf_hub_url
default_modnet_path = hf_hub_url('Pie31415/rome','modnet_photographic_portrait_matting.ckpt')
default_model_path = hf_hub_url('Pie31415/rome','models/rome.pth')
# parser configurations
parser = argparse.ArgumentParser(conflict_handler='resolve')
parser.add_argument('--save_dir', default='.', type=str)
parser.add_argument('--save_render', default='True', type=args_utils.str2bool, choices=[True, False])
parser.add_argument('--model_checkpoint', default=default_model_path, type=str)
parser.add_argument('--modnet_path', default=default_modnet_path, type=str)
parser.add_argument('--random_seed', default=0, type=int)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--verbose', default='False', type=args_utils.str2bool, choices=[True, False])
args, _ = parser.parse_known_args()
parser = importlib.import_module(f'src.rome').ROME.add_argparse_args(parser)
args = parser.parse_args()
args.deca_path = 'DECA'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from infer import Infer
infer = Infer(args)
infer = infer.to(device)
def predict(source_img, driver_img):
out = infer.evaluate(source_img, driver_img, crop_center=False)
res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(),
out['source_information']['data_dict']['target_img'][0].cpu(),
out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2))
return res[..., ::-1]
import gradio as gr
gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Image(type="pil")
],
outputs=gr.Image(),
examples=[]).launch()