control-animation / text_to_animation /pipelines /text_to_video_pipeline_flax.py
Pie31415's picture
gigant merge
71e9a42
raw
history blame contribute delete
No virus
53.8 kB
import warnings
from functools import partial
from typing import Dict, List, Optional, Union
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax.jax_utils import unreplicate
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel
from einops import rearrange, repeat
from diffusers.models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel
from diffusers.schedulers import (
FlaxDDIMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
)
from diffusers.utils import PIL_INTERPOLATION, logging, replace_example_docstring
from diffusers.pipelines.pipeline_flax_utils import FlaxDiffusionPipeline
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
"""
Text2Video-Zero:
- Inputs: Prompt, Pose Control via mp4/gif, First Frame (?)
- JAX implementation
- 3DUnet to replace 2DUnetConditional
"""
def replicate_devices(array):
return jnp.expand_dims(array, 0).repeat(jax.device_count(), 0)
DEBUG = False # Set to True to use python for loop instead of jax.fori_loop for easier debugging
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import jax
>>> import numpy as np
>>> import jax.numpy as jnp
>>> from flax.jax_utils import replicate
>>> from flax.training.common_utils import shard
>>> from diffusers.utils import load_image
>>> from PIL import Image
>>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
>>> def image_grid(imgs, rows, cols):
... w, h = imgs[0].size
... grid = Image.new("RGB", size=(cols * w, rows * h))
... for i, img in enumerate(imgs):
... grid.paste(img, box=(i % cols * w, i // cols * h))
... return grid
>>> def create_key(seed=0):
... return jax.random.PRNGKey(seed)
>>> rng = create_key(0)
>>> # get canny image
>>> canny_image = load_image(
... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg"
... )
>>> prompts = "best quality, extremely detailed"
>>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality"
>>> # load control net and stable diffusion v1-5
>>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
... )
>>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
... )
>>> params["controlnet"] = controlnet_params
>>> num_samples = jax.device_count()
>>> rng = jax.random.split(rng, jax.device_count())
>>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
>>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
>>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
>>> p_params = replicate(params)
>>> prompt_ids = shard(prompt_ids)
>>> negative_prompt_ids = shard(negative_prompt_ids)
>>> processed_image = shard(processed_image)
>>> output = pipe(
... prompt_ids=prompt_ids,
... image=processed_image,
... params=p_params,
... prng_seed=rng,
... num_inference_steps=50,
... neg_prompt_ids=negative_prompt_ids,
... jit=True,
... ).images
>>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
>>> output_images = image_grid(output_images, num_samples // 4, 4)
>>> output_images.save("generated_image.png")
```
"""
class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
unet_vanilla,
controlnet,
scheduler: Union[
FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
],
safety_checker: FlaxStableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
dtype: jnp.dtype = jnp.float32,
):
super().__init__()
self.dtype = dtype
if safety_checker is None:
logger.warn(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
unet_vanilla=unet_vanilla,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
def DDPM_forward(self, params, prng, x0, t0, tMax, shape, text_embeddings):
if x0 is None:
return jax.random.normal(prng, shape, dtype=text_embeddings.dtype)
else:
eps = jax.random.normal(prng, x0.shape, dtype=text_embeddings.dtype)
alpha_vec = jnp.prod(params["scheduler"].common.alphas[t0:tMax])
xt = jnp.sqrt(alpha_vec) * x0 + \
jnp.sqrt(1-alpha_vec) * eps
return xt
def DDIM_backward(self, params, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, text_embeddings, latents_local,
guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
f = latents_local.shape[2]
latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
latents = latents_local.copy()
x_t0_1 = None
x_t1_1 = None
max_timestep = len(timesteps)-1
timesteps = jnp.array(timesteps)
def while_body(args):
step, latents, x_t0_1, x_t1_1, scheduler_state = args
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
latent_model_input = jnp.concatenate(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
scheduler_state, latent_model_input, timestep=t
)
f = latents.shape[0]
te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
if controlnet_image is not None:
down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
{"params": params["controlnet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
controlnet_cond=controlnet_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
else:
noise_pred = self.unet.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
x_t0_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t0), latents, x_t0_1)
x_t1_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t1), latents, x_t1_1)
return (step + 1, latents, x_t0_1, x_t1_1, scheduler_state)
latents_shape = latents.shape
x_t0_1, x_t1_1 = jnp.zeros(latents_shape), jnp.zeros(latents_shape)
def cond_fun(arg):
step, latents, x_t0_1, x_t1_1, scheduler_state = arg
return (step < skip_t) & (step < num_inference_steps)
if DEBUG:
step = 0
while cond_fun((step, latents, x_t0_1, x_t1_1)):
step, latents, x_t0_1, x_t1_1, scheduler_state = while_body((step, latents, x_t0_1, x_t1_1, scheduler_state))
step = step + 1
else:
_, latents, x_t0_1, x_t1_1, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, x_t0_1, x_t1_1, scheduler_state))
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
res = {"x0": latents.copy()}
if x_t0_1 is not None:
x_t0_1 = rearrange(x_t0_1, "(b f) c h w -> b c f h w", f=f)
res["x_t0_1"] = x_t0_1.copy()
if x_t1_1 is not None:
x_t1_1 = rearrange(x_t1_1, "(b f) c h w -> b c f h w", f=f)
res["x_t1_1"] = x_t1_1.copy()
return res
def warp_latents_independently(self, latents, reference_flow):
_, _, H, W = reference_flow.shape
b, _, f, h, w = latents.shape
assert b == 1
coords0 = coords_grid(f, H, W)
coords_t0 = coords0 + reference_flow
coords_t0 = coords_t0.at[:, 0].set(coords_t0[:, 0] * w / W)
coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
f, c, _, _ = coords_t0.shape
coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
latents_0 = rearrange(latents[0], 'c f h w -> f c h w')
warped = grid_sample(latents_0, coords_t0, "mirror")
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
return warped
def warp_vid_independently(self, vid, reference_flow):
_, _, H, W = reference_flow.shape
f, _, h, w = vid.shape
coords0 = coords_grid(f, H, W)
coords_t0 = coords0 + reference_flow
coords_t0 = coords_t0.at[:, 0].set(coords_t0[:, 0] * w / W)
coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
f, c, _, _ = coords_t0.shape
coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
# latents_0 = rearrange(vid, 'c f h w -> f c h w')
warped = grid_sample(vid, coords_t0, "zeropad")
# warped = rearrange(warped, 'f c h w -> b c f h w', f=f)
return warped
def create_motion_field(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
reference_flow = jnp.zeros(
(video_length-1, 2, 512, 512), dtype=latents.dtype)
for fr_idx, frame_id in enumerate(frame_ids):
reference_flow = reference_flow.at[fr_idx, 0, :,
:].set(motion_field_strength_x*(frame_id))
reference_flow = reference_flow.at[fr_idx, 1, :,
:].set(motion_field_strength_y*(frame_id))
return reference_flow
def create_motion_field_and_warp_latents(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
motion_field = self.create_motion_field(motion_field_strength_x=motion_field_strength_x,
motion_field_strength_y=motion_field_strength_y, latents=latents, video_length=video_length, frame_ids=frame_ids)
for idx, latent in enumerate(latents):
latents = latents.at[idx].set(self.warp_latents_independently(
latent[None], motion_field)[0])
return motion_field, latents
def text_to_video_zero(self, params,
prng,
text_embeddings,
video_length: Optional[int],
do_classifier_free_guidance = True,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
num_videos_per_prompt: Optional[int] = 1,
xT = None,
smooth_bg_strength: float=0.,
motion_field_strength_x: float = 12,
motion_field_strength_y: float = 12,
t0: int = 44,
t1: int = 47,
controlnet_image=None,
controlnet_conditioning_scale=0,
):
frame_ids = list(range(video_length))
# Prepare timesteps
params["scheduler"] = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
timesteps = params["scheduler"].timesteps
# Prepare latent variables
num_channels_latents = self.unet.in_channels
batch_size = 1
xT = prepare_latents(params, prng, batch_size * num_videos_per_prompt, num_channels_latents, height, width, self.vae_scale_factor, xT)
timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
141, 121, 101, 81, 61, 41, 21, 1]
timesteps_ddpm.reverse()
t0 = timesteps_ddpm[t0]
t1 = timesteps_ddpm[t1]
x_t1_1 = None
# Denoising loop
shape = (batch_size, num_channels_latents, 1, height //
self.vae.scaling_factor, width // self.vae.scaling_factor)
# perform ∆t backward steps by stable diffusion
ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
text_embeddings=text_embeddings, latents_local=xT, guidance_scale=guidance_scale,
controlnet_image=jnp.stack([controlnet_image[0]] * 2), controlnet_conditioning_scale=controlnet_conditioning_scale)
x0 = ddim_res["x0"]
# apply warping functions
if "x_t0_1" in ddim_res:
x_t0_1 = ddim_res["x_t0_1"]
if "x_t1_1" in ddim_res:
x_t1_1 = ddim_res["x_t1_1"]
x_t0_k = x_t0_1[:, :, :1, :, :].repeat(video_length-1, 2)
reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_t0_k, video_length=video_length, frame_ids=frame_ids[1:])
# assuming t0=t1=1000, if t0 = 1000
# DDPM forward for more motion freedom
ddpm_fwd = partial(self.DDPM_forward, params=params, prng=prng, x0=x_t0_k, t0=t0,
tMax=t1, shape=shape, text_embeddings=text_embeddings)
x_t1_k = jax.lax.cond(t1 > t0,
ddpm_fwd,
lambda:x_t0_k
)
x_t1 = jnp.concatenate([x_t1_1, x_t1_k], axis=2)
# backward stepts by stable diffusion
#warp the controlnet image following the same flow defined for latent
controlnet_video = controlnet_image[:video_length]
controlnet_video = controlnet_video.at[1:].set(self.warp_vid_independently(controlnet_video[1:], reference_flow))
controlnet_image = jnp.concatenate([controlnet_video]*2)
smooth_bg = True
if smooth_bg:
#latent shape: "b c f h w"
M_FG = repeat(get_mask_pose(controlnet_video), "f h w -> b c f h w", c=x_t1.shape[1], b=batch_size)
initial_bg = repeat(x_t1[:,:,0] * (1 - M_FG[:,:,0]), "b c h w -> b c f h w", f=video_length-1)
#warp the controlnet image following the same flow defined for latent #f c h w
initial_bg_warped = self.warp_latents_independently(initial_bg, reference_flow)
bgs = x_t1[:,:,1:] * (1 - M_FG[:,:,1:]) #initial background
initial_mask_warped = 1 - self.warp_latents_independently(repeat(M_FG[:,:,0], "b c h w -> b c f h w", f = video_length-1), reference_flow)
# initial_mask_warped = 1 - warp_vid_independently(repeat(M_FG[:,:,0], "b c h w -> (b f) c h w", f = video_length-1), reference_flow)
# initial_mask_warped = rearrange(initial_mask_warped, "(b f) c h w -> b c f h w", b=batch_size)
mask = (1 - M_FG[:,:,1:]) * initial_mask_warped
x_t1 = x_t1.at[:,:,1:].set( (1 - mask) * x_t1[:,:,1:] + mask * (initial_bg_warped * smooth_bg_strength + (1 - smooth_bg_strength) * bgs))
ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
text_embeddings=text_embeddings, latents_local=x_t1, guidance_scale=guidance_scale,
controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale,
)
x0 = ddim_res["x0"]
del ddim_res
del x_t1
del x_t1_1
del x_t1_k
return x0
def denoise_latent(self, params, num_inference_steps, timesteps, do_classifier_free_guidance, text_embeddings, latents,
guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
# f = latents_local.shape[2]
# latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
max_timestep = len(timesteps)-1
timesteps = jnp.array(timesteps)
def while_body(args):
step, latents, scheduler_state = args
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
latent_model_input = jnp.concatenate(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
scheduler_state, latent_model_input, timestep=t
)
f = latents.shape[0]
te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
if controlnet_image is not None:
down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
{"params": params["controlnet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
controlnet_cond=controlnet_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet_vanilla.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
else:
noise_pred = self.unet_vanilla.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
return (step + 1, latents, scheduler_state)
def cond_fun(arg):
step, latents, scheduler_state = arg
return (step < num_inference_steps)
if DEBUG:
step = 0
while cond_fun((step, latents, scheduler_state)):
step, latents, scheduler_state = while_body((step, latents, scheduler_state))
step = step + 1
else:
_, latents, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, scheduler_state))
# latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
return latents
def generate_starting_frames(self,
params,
prngs: list, #list of prngs for each img
prompt,
neg_prompt,
controlnet_image,
do_classifier_free_guidance = True,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
t0: int = 44,
t1: int = 47,
controlnet_conditioning_scale=1.,
):
height, width = controlnet_image.shape[-2:]
if height % 64 != 0 or width % 64 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
shape = (self.unet.in_channels, height //
self.vae_scale_factor, width // self.vae_scale_factor) # c h w
# scale the initial noise by the standard deviation required by the scheduler
# print(f"Generating {len(prngs)} first frames with prompt {prompt}, for {num_inference_steps} steps. PRNG seeds are: {prngs}")
latents = jnp.stack([jax.random.normal(prng, shape) for prng in prngs]) # b c h w
latents = latents * params["scheduler"].init_noise_sigma
timesteps = params["scheduler"].timesteps
timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
141, 121, 101, 81, 61, 41, 21, 1]
timesteps_ddpm.reverse()
t0 = timesteps_ddpm[t0]
t1 = timesteps_ddpm[t1]
# get prompt text embeddings
prompt_ids = shard(self.prepare_text_inputs(prompt))
# prompt_embeds = jax.pmap( lambda prompt_ids, params: )(prompt_ids, params)
@jax.pmap
def prepare_text(params, prompt_ids, uncond_input):
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
text_embeddings = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
return text_embeddings
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = 1
max_length = prompt_ids.shape[-1]
if neg_prompt is None:
uncond_input = shard(self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
).input_ids)
else:
neg_prompt_ids = self.prepare_text_inputs(neg_prompt)
uncond_input = shard(neg_prompt_ids)
text_embeddings = prepare_text(params, prompt_ids, uncond_input)
controlnet_image = shard(jnp.stack([controlnet_image[0]] * len(prngs) * 2))
timesteps = shard(jnp.array(timesteps))
guidance_scale = shard(jnp.array(guidance_scale))
controlnet_conditioning_scale = shard(jnp.array(controlnet_conditioning_scale))
#latent is shape # b c h w
# vmap_gen_start_frame = jax.vmap(lambda latent: p_generate_starting_frames(self, num_inference_steps, params, timesteps, text_embeddings, shard(latent[None]), guidance_scale, controlnet_image, controlnet_conditioning_scale))
# decoded_latents = vmap_gen_start_frame(latents)
decoded_latents = p_generate_starting_frames(self, num_inference_steps, params, timesteps, text_embeddings, shard(latents), guidance_scale, controlnet_image, controlnet_conditioning_scale)
# print(f"shape output: {decoded_latents.shape}")
return unshard(decoded_latents)#[:, 0]
def generate_video(
self,
prompt: str,
image: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int = 50,
guidance_scale: Union[float, jnp.array] = 7.5,
latents: jnp.array = None,
neg_prompt: str = "",
controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
return_dict: bool = True,
jit: bool = False,
xT = None,
smooth_bg_strength: float=0.,
motion_field_strength_x: float = 3,
motion_field_strength_y: float = 4,
t0: int = 44,
t1: int = 47,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt_ids (`jnp.array`):
The prompt or prompts to guide the image generation.
image (`jnp.array`):
Array representing the ControlNet input condition. ControlNet use this input condition to generate
guidance to Unet.
params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights
prng_seed (`jax.random.KeyArray` or `jax.Array`): Array containing random number generator key
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
latents (`jnp.array`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
controlnet_conditioning_scale (`float` or `jnp.array`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
a plain tuple.
jit (`bool`, defaults to `False`):
Whether to run `pmap` versions of the generation and safety scoring functions. NOTE: This argument
exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release.
Examples:
Returns:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
height, width = image.shape[-2:]
vid_length = image.shape[0]
# get prompt text embeddings
prompt_ids = self.prepare_text_inputs([prompt] * vid_length)
neg_prompt_ids = self.prepare_text_inputs([neg_prompt] * vid_length)
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = 1
if isinstance(guidance_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
guidance_scale = guidance_scale[:, None]
if isinstance(controlnet_conditioning_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
if jit:
images = _p_generate(
self,
replicate_devices(prompt_ids),
replicate_devices(image),
jax_utils.replicate(params),
replicate_devices(prng_seed),
num_inference_steps,
replicate_devices(guidance_scale),
replicate_devices(latents) if latents is not None else None,
replicate_devices(neg_prompt_ids) if neg_prompt_ids is not None else None,
replicate_devices(controlnet_conditioning_scale),
replicate_devices(xT) if xT is not None else None,
replicate_devices(smooth_bg_strength),
replicate_devices(motion_field_strength_x),
replicate_devices(motion_field_strength_y),
t0,
t1,
)
else:
images = self._generate(
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
if self.safety_checker is not None:
safety_params = params["safety_checker"]
images_uint8_casted = (images * 255).round().astype("uint8")
num_devices, batch_size = images.shape[:2]
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
images = np.asarray(images)
# block images
if any(has_nsfw_concept):
for i, is_nsfw in enumerate(has_nsfw_concept):
if is_nsfw:
images[i] = np.asarray(images_uint8_casted[i])
images = images.reshape(num_devices, batch_size, height, width, 3)
else:
images = np.asarray(images)
has_nsfw_concept = False
if not return_dict:
return (images, has_nsfw_concept)
return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
def prepare_text_inputs(self, prompt: Union[str, List[str]]):
if not isinstance(prompt, (str, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
return text_input.input_ids
def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
if not isinstance(image, (Image.Image, list)):
raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}")
if isinstance(image, Image.Image):
image = [image]
processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image])
return processed_images
def _get_has_nsfw_concepts(self, features, params):
has_nsfw_concepts = self.safety_checker(features, params)
return has_nsfw_concepts
def _run_safety_checker(self, images, safety_model_params, jit=False):
# safety_model_params should already be replicated when jit is True
pil_images = [Image.fromarray(image) for image in images]
features = self.feature_extractor(pil_images, return_tensors="np").pixel_values
if jit:
features = shard(features)
has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
has_nsfw_concepts = unshard(has_nsfw_concepts)
safety_model_params = unreplicate(safety_model_params)
else:
has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)
images_was_copied = False
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if not images_was_copied:
images_was_copied = True
images = images.copy()
images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image
if any(has_nsfw_concepts):
warnings.warn(
"Potential NSFW content was detected in one or more images. A black image will be returned"
" instead. Try again with a different prompt and/or seed."
)
return images, has_nsfw_concepts
def _generate(
self,
prompt_ids: jnp.array,
image: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int,
guidance_scale: float,
latents: Optional[jnp.array] = None,
neg_prompt_ids: Optional[jnp.array] = None,
controlnet_conditioning_scale: float = 1.0,
xT = None,
smooth_bg_strength: float = 0.,
motion_field_strength_x: float = 12,
motion_field_strength_y: float = 12,
t0: int = 44,
t1: int = 47,
):
height, width = image.shape[-2:]
video_length = image.shape[0]
if height % 64 != 0 or width % 64 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
# get prompt text embeddings
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = prompt_ids.shape[0]
max_length = prompt_ids.shape[-1]
if neg_prompt_ids is None:
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
).input_ids
else:
uncond_input = neg_prompt_ids
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
image = jnp.concatenate([image] * 2)
seed_t2vz, prng_seed = jax.random.split(prng_seed)
#get the latent following text to video zero
latents = self.text_to_video_zero(params, seed_t2vz, text_embeddings=context, video_length=video_length,
height=height, width = width, num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale, controlnet_image=image,
xT=xT, smooth_bg_strength=smooth_bg_strength, t0=t0, t1=t1,
motion_field_strength_x=motion_field_strength_x,
motion_field_strength_y=motion_field_strength_y,
controlnet_conditioning_scale=controlnet_conditioning_scale
)
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample
video = (video / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
return video
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt_ids: jnp.array,
image: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int = 50,
guidance_scale: Union[float, jnp.array] = 7.5,
latents: jnp.array = None,
neg_prompt_ids: jnp.array = None,
controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
return_dict: bool = True,
jit: bool = False,
xT = None,
smooth_bg_strength: float = 0.,
motion_field_strength_x: float = 3,
motion_field_strength_y: float = 4,
t0: int = 44,
t1: int = 47,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt_ids (`jnp.array`):
The prompt or prompts to guide the image generation.
image (`jnp.array`):
Array representing the ControlNet input condition. ControlNet use this input condition to generate
guidance to Unet.
params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights
prng_seed (`jax.random.KeyArray` or `jax.Array`): Array containing random number generator key
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
latents (`jnp.array`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
controlnet_conditioning_scale (`float` or `jnp.array`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
a plain tuple.
jit (`bool`, defaults to `False`):
Whether to run `pmap` versions of the generation and safety scoring functions. NOTE: This argument
exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release.
Examples:
Returns:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
height, width = image.shape[-2:]
if isinstance(guidance_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
guidance_scale = guidance_scale[:, None]
if isinstance(controlnet_conditioning_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
if jit:
images = _p_generate(
self,
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
else:
images = self._generate(
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
if self.safety_checker is not None:
safety_params = params["safety_checker"]
images_uint8_casted = (images * 255).round().astype("uint8")
num_devices, batch_size = images.shape[:2]
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
images = np.asarray(images)
# block images
if any(has_nsfw_concept):
for i, is_nsfw in enumerate(has_nsfw_concept):
if is_nsfw:
images[i] = np.asarray(images_uint8_casted[i])
images = images.reshape(num_devices, batch_size, height, width, 3)
else:
images = np.asarray(images)
has_nsfw_concept = False
if not return_dict:
return (images, has_nsfw_concept)
return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
# Static argnums are pipe, num_inference_steps. A change would trigger recompilation.
# Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`).
@partial(
jax.pmap,
in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0, 0, 0, 0, 0, None, None),
static_broadcasted_argnums=(0, 5, 14, 15)
)
def _p_generate(
pipe,
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
):
return pipe._generate(
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
@partial(jax.pmap, static_broadcasted_argnums=(0,))
def _p_get_has_nsfw_concepts(pipe, features, params):
return pipe._get_has_nsfw_concepts(features, params)
@partial(
jax.pmap,
in_axes=(None, None, 0, 0, 0, 0, 0, 0, 0),
static_broadcasted_argnums=(0, 1)
)
def p_generate_starting_frames(pipe, num_inference_steps, params, timesteps, text_embeddings, latents, guidance_scale, controlnet_image, controlnet_conditioning_scale):
# perform ∆t backward steps by stable diffusion
# delta_t_diffusion = jax.vmap(lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
# text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
# controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale))
# ddim_res = delta_t_diffusion(latents)
# latents = ddim_res["x0"] #output is i b c f h w
# DDPM forward for more motion freedom
# ddpm_fwd = jax.vmap(lambda prng, latent: self.DDPM_forward(params=params, prng=prng, x0=latent, t0=t0,
# tMax=t1, shape=shape, text_embeddings=text_embeddings))
# latents = ddpm_fwd(stacked_prngs, latents)
# main backward diffusion
# denoise_first_frame = lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=100000, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
# text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
# controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
# latents = rearrange(latents, 'i b c f h w -> (i b) c f h w')
# ddim_res = denoise_first_frame(latents)
latents = pipe.denoise_latent(params, num_inference_steps=num_inference_steps, timesteps=timesteps, do_classifier_free_guidance=True,
text_embeddings=text_embeddings, latents=latents, guidance_scale=guidance_scale,
controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
# latents = rearrange(ddim_res["x0"], 'i b c f h w -> (i b) c f h w') #output is i b c f h w
# scale and decode the image latents with vae
latents = 1 / pipe.vae.config.scaling_factor * latents
# latents = rearrange(latents, "b c h w -> (b f) c h w")
imgs = pipe.vae.apply({"params": params["vae"]}, latents, method=pipe.vae.decode).sample
imgs = (imgs / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
return imgs
def unshard(x: jnp.ndarray):
# einops.rearrange(x, 'd b ... -> (d b) ...')
num_devices, batch_size = x.shape[:2]
rest = x.shape[2:]
return x.reshape(num_devices * batch_size, *rest)
def preprocess(image, dtype):
image = image.convert("RGB")
w, h = image.size
w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = jnp.array(image).astype(dtype) / 255.0
image = image[None].transpose(0, 3, 1, 2)
return image
def prepare_latents(params, prng, batch_size, num_channels_latents, height, width, vae_scale_factor, latents=None):
shape = (batch_size, num_channels_latents, 1, height //
vae_scale_factor, width // vae_scale_factor) #b c f h w
# scale the initial noise by the standard deviation required by the scheduler
if latents is None:
latents = jax.random.normal(prng, shape)
latents = latents * params["scheduler"].init_noise_sigma
return latents
def coords_grid(batch, ht, wd):
coords = jnp.meshgrid(jnp.arange(ht), jnp.arange(wd), indexing="ij")
coords = jnp.stack(coords[::-1], axis=0)
return coords[None].repeat(batch, 0)
def adapt_pos_mirror(x, y, W, H):
#adapt the position, with mirror padding
x_w_mirror = ((x + W - 1) % (2*(W - 1))) - W + 1
x_adapted = jnp.where(x_w_mirror > 0, x_w_mirror, - (x_w_mirror))
y_w_mirror = ((y + H - 1) % (2*(H - 1))) - H + 1
y_adapted = jnp.where(y_w_mirror > 0, y_w_mirror, - (y_w_mirror))
return y_adapted, x_adapted
def safe_get_zeropad(img, x,y,W,H):
return jnp.where((x < W) & (x > 0) & (y < H) & (y > 0), img[y,x], 0.)
def safe_get_mirror(img, x,y,W,H):
return img[adapt_pos_mirror(x,y,W,H)]
@partial(jax.vmap, in_axes=(0, 0, None))
@partial(jax.vmap, in_axes=(0, None, None))
@partial(jax.vmap, in_axes=(None,0, None))
@partial(jax.vmap, in_axes=(None, 0, None))
def grid_sample(latents, grid, method):
# this is an alternative to torch.functional.nn.grid_sample in jax
# this implementation is following the algorithm described @ https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
# but with coordinates scaled to the size of the image
if method == "mirror":
return safe_get_mirror(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
else: #default is zero padding
return safe_get_zeropad(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
def bandw_vid(vid, threshold):
vid = jnp.max(vid, axis=1)
return jnp.where(vid > threshold, 1, 0)
def mean_blur(vid, k):
window = jnp.ones((vid.shape[0], k, k))/ (k*k)
convolve=jax.vmap(lambda img, kernel:jax.scipy.signal.convolve(img, kernel, mode='same'))
smooth_vid = convolve(vid, window)
return smooth_vid
def get_mask_pose(vid):
vid = bandw_vid(vid, 0.4)
l, h, w = vid.shape
vid = jax.image.resize(vid, (l, h//8, w//8), "nearest")
vid=bandw_vid(mean_blur(vid, 7)[:,None], threshold=0.01)
return vid/(jnp.max(vid) + 1e-4)
#return jax.image.resize(vid/(jnp.max(vid) + 1e-4), (l, h, w), "nearest")