control-animation / webui /app_control_animation.py
Pie31415's picture
update
e2f5469
raw
history blame
9.37 kB
import gradio as gr
from text_to_animation.model import ControlAnimationModel
import os
from utils.hf_utils import get_model_list
huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
on_huggingspace = huggingspace_name if huggingspace_name is not None else False
examples = [["A surfer in miami walking by the beach",
None,
"Motion 3",
None,
3,
0,
None,
None,
None,
None,
None,
None,
0],
]
def on_video_path_update(evt: gr.EventData):
return f"Selection: **{evt._data}**"
def pose_gallery_callback(evt: gr.SelectData):
return f"Motion {evt.index+1}"
def get_frame_index(evt: gr.SelectData):
return evt.index
def create_demo(model: ControlAnimationModel):
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
with gr.Column():
# TODO: update so that model_link is customizable
# model_link = gr.Dropdown(
# label="Model Link",
# choices=["runwayml/stable-diffusion-v1-5"],
# value="runwayml/stable-diffusion-v1-5",
# )
prompt = gr.Textbox(
placeholder="Prompt",
show_label=False,
lines=2,
info="Give a prompt for an animation you would like to generate. The prompt will be used to create the first initial frame and then the animation.",
)
negative_prompt = gr.Textbox(
placeholder="Negative Prompt (optional)",
show_label=False,
lines=2,
)
gen_frames_button = gr.Button(
value="Generate Initial Frames", variant="primary"
)
with gr.Accordion("Advanced options", open=False):
if on_huggingspace:
video_length = gr.Slider(
label="Video length", minimum=8, maximum=16, step=1
)
else:
video_length = gr.Number(
label="Video length", value=8, precision=0
)
seed = gr.Slider(
label="Seed",
info="-1 for random seed on each run. Otherwise, the seed will be fixed.",
minimum=-1,
maximum=65536,
value=0,
step=1,
)
motion_field_strength_x = gr.Slider(
label="Global Translation $\\delta_{x}$",
minimum=-20,
maximum=20,
value=12,
step=1,
)
motion_field_strength_y = gr.Slider(
label="Global Translation $\\delta_{y}$",
minimum=-20,
maximum=20,
value=12,
step=1,
)
t0 = gr.Slider(
label="Timestep t0",
minimum=0,
maximum=47,
value=44,
step=1,
info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1 ",
)
t1 = gr.Slider(
label="Timestep t1",
minimum=1,
info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1",
maximum=48,
value=47,
step=1,
)
chunk_size = gr.Slider(
label="Chunk size",
minimum=2,
maximum=16,
value=8,
step=1,
visible=not on_huggingspace,
info="Number of frames processed at once. Reduce for lower memory usage.",
)
merging_ratio = gr.Slider(
label="Merging ratio",
minimum=0.0,
maximum=0.9,
step=0.1,
value=0.0,
visible=not on_huggingspace,
info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).",
)
with gr.Column():
gallery_pose_sequence = gr.Gallery(
label="Pose Sequence",
value=[
("__assets__/walk_01.gif", "Motion 1"),
("__assets__/walk_02.gif", "Motion 2"),
("__assets__/walk_03.gif", "Motion 3"),
("__assets__/run.gif", "Motion 4"),
("__assets__/dance1.gif", "Motion 5"),
("__assets__/dance2.gif", "Motion 6"),
("__assets__/dance3.gif", "Motion 7"),
("__assets__/dance4.gif", "Motion 8"),
("__assets__/dance5.gif", "Motion 9"),
],
).style(grid=3, columns=3)
input_video_path = gr.Textbox(
label="Pose Sequence", visible=False, value="Motion 1"
)
pose_sequence_selector = gr.Markdown("Pose Sequence: **Motion 1**")
with gr.Row():
with gr.Column(visible=True) as frame_selection_view:
initial_frames = gr.Gallery(
label="Initial Frames", show_label=False
).style(grid=4, columns=4, rows=1, object_fit="contain", preview=True)
gr.Markdown("Select an initial frame to start your animation with.")
gen_animation_button = gr.Button(
value="Select Initial Frame & Generate Animation",
variant="secondary",
)
with gr.Column(visible=True) as animation_view:
result = gr.Image(label="Generated Video")
with gr.Box(visible=False):
controlnet_video = gr.Video(label="ControlNet Video")
initial_frame_index = gr.Number(
label="Selected Initial Frame Index", value=-1, precision=0
)
input_video_path.change(on_video_path_update, None, pose_sequence_selector)
gallery_pose_sequence.select(pose_gallery_callback, None, input_video_path)
initial_frames.select(fn=get_frame_index, outputs=initial_frame_index)
frame_inputs = [
prompt,
input_video_path,
negative_prompt,
seed,
]
animation_inputs = [
controlnet_video,
prompt,
# initial_frame_index,
# input_video_path,
# model_link,
# motion_field_strength_x,
# motion_field_strength_y,
# t0,
# t1,
# negative_prompt,
# chunk_size,
# video_length,
# merging_ratio,
negative_prompt,
seed
]
def submit_select(initial_frame_index: int):
if initial_frame_index != -1: # More to next step
return {
frame_selection_view: gr.update(visible=False),
animation_view: gr.update(visible=True),
}
return {
frame_selection_view: gr.update(visible=True),
animation_view: gr.update(visible=False),
}
gen_frames_button.click(
fn=model.generate_initial_frames,
inputs=frame_inputs,
outputs=[controlnet_video, initial_frames],
)
gen_animation_button.click(
fn=submit_select,
inputs=initial_frame_index,
outputs=[frame_selection_view, animation_view],
).then(
fn=model.generate_video_from_frame,
inputs=animation_inputs,
outputs=result,
)
# gr.Examples(examples=examples,
# inputs=animation_inputs,
# outputs=result,
# fn=model.generate_animation,
# cache_examples=on_huggingspace,
# run_on_click=True,
# )
return demo