Spaces:
Build error
Build error
import gradio as gr | |
from text_to_animation.model import ControlAnimationModel | |
import os | |
from utils.hf_utils import get_model_list | |
huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME") | |
on_huggingspace = huggingspace_name if huggingspace_name is not None else False | |
examples = [["A surfer in miami walking by the beach", | |
None, | |
"Motion 3", | |
None, | |
3, | |
0, | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
0], | |
] | |
def on_video_path_update(evt: gr.EventData): | |
return f"Selection: **{evt._data}**" | |
def pose_gallery_callback(evt: gr.SelectData): | |
return f"Motion {evt.index+1}" | |
def get_frame_index(evt: gr.SelectData): | |
return evt.index | |
def create_demo(model: ControlAnimationModel): | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
# TODO: update so that model_link is customizable | |
# model_link = gr.Dropdown( | |
# label="Model Link", | |
# choices=["runwayml/stable-diffusion-v1-5"], | |
# value="runwayml/stable-diffusion-v1-5", | |
# ) | |
prompt = gr.Textbox( | |
placeholder="Prompt", | |
show_label=False, | |
lines=2, | |
info="Give a prompt for an animation you would like to generate. The prompt will be used to create the first initial frame and then the animation.", | |
) | |
negative_prompt = gr.Textbox( | |
placeholder="Negative Prompt (optional)", | |
show_label=False, | |
lines=2, | |
) | |
gen_frames_button = gr.Button( | |
value="Generate Initial Frames", variant="primary" | |
) | |
with gr.Accordion("Advanced options", open=False): | |
if on_huggingspace: | |
video_length = gr.Slider( | |
label="Video length", minimum=8, maximum=16, step=1 | |
) | |
else: | |
video_length = gr.Number( | |
label="Video length", value=8, precision=0 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
info="-1 for random seed on each run. Otherwise, the seed will be fixed.", | |
minimum=-1, | |
maximum=65536, | |
value=0, | |
step=1, | |
) | |
motion_field_strength_x = gr.Slider( | |
label="Global Translation $\\delta_{x}$", | |
minimum=-20, | |
maximum=20, | |
value=12, | |
step=1, | |
) | |
motion_field_strength_y = gr.Slider( | |
label="Global Translation $\\delta_{y}$", | |
minimum=-20, | |
maximum=20, | |
value=12, | |
step=1, | |
) | |
t0 = gr.Slider( | |
label="Timestep t0", | |
minimum=0, | |
maximum=47, | |
value=44, | |
step=1, | |
info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1 ", | |
) | |
t1 = gr.Slider( | |
label="Timestep t1", | |
minimum=1, | |
info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1", | |
maximum=48, | |
value=47, | |
step=1, | |
) | |
chunk_size = gr.Slider( | |
label="Chunk size", | |
minimum=2, | |
maximum=16, | |
value=8, | |
step=1, | |
visible=not on_huggingspace, | |
info="Number of frames processed at once. Reduce for lower memory usage.", | |
) | |
merging_ratio = gr.Slider( | |
label="Merging ratio", | |
minimum=0.0, | |
maximum=0.9, | |
step=0.1, | |
value=0.0, | |
visible=not on_huggingspace, | |
info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).", | |
) | |
with gr.Column(): | |
gallery_pose_sequence = gr.Gallery( | |
label="Pose Sequence", | |
value=[ | |
("__assets__/walk_01.gif", "Motion 1"), | |
("__assets__/walk_02.gif", "Motion 2"), | |
("__assets__/walk_03.gif", "Motion 3"), | |
("__assets__/run.gif", "Motion 4"), | |
("__assets__/dance1.gif", "Motion 5"), | |
("__assets__/dance2.gif", "Motion 6"), | |
("__assets__/dance3.gif", "Motion 7"), | |
("__assets__/dance4.gif", "Motion 8"), | |
("__assets__/dance5.gif", "Motion 9"), | |
], | |
).style(grid=3, columns=3) | |
input_video_path = gr.Textbox( | |
label="Pose Sequence", visible=False, value="Motion 1" | |
) | |
pose_sequence_selector = gr.Markdown("Pose Sequence: **Motion 1**") | |
with gr.Row(): | |
with gr.Column(visible=True) as frame_selection_view: | |
initial_frames = gr.Gallery( | |
label="Initial Frames", show_label=False | |
).style(grid=4, columns=4, rows=1, object_fit="contain", preview=True) | |
gr.Markdown("Select an initial frame to start your animation with.") | |
gen_animation_button = gr.Button( | |
value="Select Initial Frame & Generate Animation", | |
variant="secondary", | |
) | |
with gr.Column(visible=True) as animation_view: | |
result = gr.Image(label="Generated Video") | |
with gr.Box(visible=False): | |
controlnet_video = gr.Video(label="ControlNet Video") | |
initial_frame_index = gr.Number( | |
label="Selected Initial Frame Index", value=-1, precision=0 | |
) | |
input_video_path.change(on_video_path_update, None, pose_sequence_selector) | |
gallery_pose_sequence.select(pose_gallery_callback, None, input_video_path) | |
initial_frames.select(fn=get_frame_index, outputs=initial_frame_index) | |
frame_inputs = [ | |
prompt, | |
input_video_path, | |
negative_prompt, | |
seed, | |
] | |
animation_inputs = [ | |
controlnet_video, | |
prompt, | |
# initial_frame_index, | |
# input_video_path, | |
# model_link, | |
# motion_field_strength_x, | |
# motion_field_strength_y, | |
# t0, | |
# t1, | |
# negative_prompt, | |
# chunk_size, | |
# video_length, | |
# merging_ratio, | |
negative_prompt, | |
seed | |
] | |
def submit_select(initial_frame_index: int): | |
if initial_frame_index != -1: # More to next step | |
return { | |
frame_selection_view: gr.update(visible=False), | |
animation_view: gr.update(visible=True), | |
} | |
return { | |
frame_selection_view: gr.update(visible=True), | |
animation_view: gr.update(visible=False), | |
} | |
gen_frames_button.click( | |
fn=model.generate_initial_frames, | |
inputs=frame_inputs, | |
outputs=[controlnet_video, initial_frames], | |
) | |
gen_animation_button.click( | |
fn=submit_select, | |
inputs=initial_frame_index, | |
outputs=[frame_selection_view, animation_view], | |
).then( | |
fn=model.generate_video_from_frame, | |
inputs=animation_inputs, | |
outputs=result, | |
) | |
# gr.Examples(examples=examples, | |
# inputs=animation_inputs, | |
# outputs=result, | |
# fn=model.generate_animation, | |
# cache_examples=on_huggingspace, | |
# run_on_click=True, | |
# ) | |
return demo | |