Spaces:
Build error
Build error
import torch | |
from torch.autograd import Function | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', [ | |
'furthest_point_sampling_forward', | |
'furthest_point_sampling_with_dist_forward' | |
]) | |
class FurthestPointSampling(Function): | |
"""Uses iterative furthest point sampling to select a set of features whose | |
corresponding points have the furthest distance.""" | |
def forward(ctx, points_xyz: torch.Tensor, | |
num_points: int) -> torch.Tensor: | |
""" | |
Args: | |
points_xyz (Tensor): (B, N, 3) where N > num_points. | |
num_points (int): Number of points in the sampled set. | |
Returns: | |
Tensor: (B, num_points) indices of the sampled points. | |
""" | |
assert points_xyz.is_contiguous() | |
B, N = points_xyz.size()[:2] | |
output = torch.cuda.IntTensor(B, num_points) | |
temp = torch.cuda.FloatTensor(B, N).fill_(1e10) | |
ext_module.furthest_point_sampling_forward( | |
points_xyz, | |
temp, | |
output, | |
b=B, | |
n=N, | |
m=num_points, | |
) | |
if torch.__version__ != 'parrots': | |
ctx.mark_non_differentiable(output) | |
return output | |
def backward(xyz, a=None): | |
return None, None | |
class FurthestPointSamplingWithDist(Function): | |
"""Uses iterative furthest point sampling to select a set of features whose | |
corresponding points have the furthest distance.""" | |
def forward(ctx, points_dist: torch.Tensor, | |
num_points: int) -> torch.Tensor: | |
""" | |
Args: | |
points_dist (Tensor): (B, N, N) Distance between each point pair. | |
num_points (int): Number of points in the sampled set. | |
Returns: | |
Tensor: (B, num_points) indices of the sampled points. | |
""" | |
assert points_dist.is_contiguous() | |
B, N, _ = points_dist.size() | |
output = points_dist.new_zeros([B, num_points], dtype=torch.int32) | |
temp = points_dist.new_zeros([B, N]).fill_(1e10) | |
ext_module.furthest_point_sampling_with_dist_forward( | |
points_dist, temp, output, b=B, n=N, m=num_points) | |
if torch.__version__ != 'parrots': | |
ctx.mark_non_differentiable(output) | |
return output | |
def backward(xyz, a=None): | |
return None, None | |
furthest_point_sample = FurthestPointSampling.apply | |
furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply | |