PhotographerAlpha7
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,12 @@ import os
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import json
|
9 |
import io
|
|
|
10 |
|
11 |
# Variables globales pour stocker les colonnes détectées
|
12 |
columns = []
|
13 |
|
|
|
14 |
# Fonction pour lire le fichier et détecter les colonnes
|
15 |
def read_file(data_file):
|
16 |
global columns
|
@@ -25,16 +27,28 @@ def read_file(data_file):
|
|
25 |
df = pd.read_excel(data_file.name)
|
26 |
else:
|
27 |
return "Invalid file format. Please upload a CSV, JSON, or Excel file."
|
28 |
-
|
29 |
# Détecter les colonnes
|
30 |
columns = df.columns.tolist()
|
31 |
return columns
|
32 |
except Exception as e:
|
33 |
return f"An error occurred: {str(e)}"
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Fonction pour entraîner le modèle
|
36 |
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col):
|
37 |
try:
|
|
|
|
|
|
|
|
|
38 |
# Charger les données
|
39 |
file_extension = os.path.splitext(data_file.name)[1]
|
40 |
if file_extension == '.csv':
|
@@ -43,31 +57,31 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
43 |
df = pd.read_json(data_file.name)
|
44 |
elif file_extension == '.xlsx':
|
45 |
df = pd.read_excel(data_file.name)
|
46 |
-
|
47 |
# Prévisualisation des données
|
48 |
preview = df.head().to_string(index=False)
|
49 |
-
|
50 |
# Préparer le texte d'entraînement
|
51 |
df['text'] = df[prompt_col] + ': ' + df[description_col]
|
52 |
dataset = Dataset.from_pandas(df[['text']])
|
53 |
-
|
54 |
# Initialiser le tokenizer et le modèle GPT-2
|
55 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
56 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
57 |
-
|
58 |
# Ajouter un token de padding si nécessaire
|
59 |
if tokenizer.pad_token is None:
|
60 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
61 |
model.resize_token_embeddings(len(tokenizer))
|
62 |
-
|
63 |
# Tokenizer les données
|
64 |
def tokenize_function(examples):
|
65 |
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
|
66 |
tokens['labels'] = tokens['input_ids'].copy()
|
67 |
return tokens
|
68 |
-
|
69 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
70 |
-
|
71 |
# Ajustement des hyperparamètres
|
72 |
training_args = TrainingArguments(
|
73 |
output_dir=output_dir,
|
@@ -87,7 +101,7 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
87 |
load_best_model_at_end=True,
|
88 |
metric_for_best_model="eval_loss"
|
89 |
)
|
90 |
-
|
91 |
# Configuration du Trainer
|
92 |
trainer = Trainer(
|
93 |
model=model,
|
@@ -95,15 +109,15 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
95 |
train_dataset=tokenized_datasets,
|
96 |
eval_dataset=tokenized_datasets,
|
97 |
)
|
98 |
-
|
99 |
# Entraînement et évaluation
|
100 |
trainer.train()
|
101 |
eval_results = trainer.evaluate()
|
102 |
-
|
103 |
# Sauvegarder le modèle fine-tuné
|
104 |
model.save_pretrained(output_dir)
|
105 |
tokenizer.save_pretrained(output_dir)
|
106 |
-
|
107 |
# Générer un graphique des pertes d'entraînement et de validation
|
108 |
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
|
109 |
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
|
@@ -114,37 +128,41 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
114 |
plt.title('Training and Validation Loss')
|
115 |
plt.legend()
|
116 |
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
|
117 |
-
|
118 |
return f"Training completed successfully.\nPreview of data:\n{preview}", eval_results
|
119 |
except Exception as e:
|
120 |
return f"An error occurred: {str(e)}"
|
121 |
|
|
|
122 |
# Fonction de génération de texte
|
123 |
-
def generate_text(prompt, temperature, top_k, max_length, repetition_penalty, use_comma):
|
124 |
try:
|
125 |
model_name = "./fine-tuned-gpt2"
|
126 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
127 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
128 |
-
|
129 |
if use_comma:
|
130 |
prompt = prompt.replace('.', ',')
|
131 |
-
|
132 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
133 |
attention_mask = inputs.attention_mask
|
134 |
outputs = model.generate(
|
135 |
-
inputs.input_ids,
|
136 |
attention_mask=attention_mask,
|
137 |
-
max_length=int(max_length),
|
138 |
-
temperature=float(temperature),
|
139 |
-
top_k=int(top_k),
|
|
|
140 |
repetition_penalty=float(repetition_penalty),
|
141 |
-
num_return_sequences=
|
142 |
pad_token_id=tokenizer.eos_token_id
|
143 |
)
|
144 |
-
|
|
|
145 |
except Exception as e:
|
146 |
return f"An error occurred: {str(e)}"
|
147 |
|
|
|
148 |
# Fonction pour configurer les presets
|
149 |
def set_preset(preset):
|
150 |
if preset == "Default":
|
@@ -154,52 +172,59 @@ def set_preset(preset):
|
|
154 |
elif preset == "High Accuracy":
|
155 |
return 10, 4, 1e-5
|
156 |
|
|
|
157 |
# Interface Gradio
|
158 |
with gr.Blocks() as ui:
|
159 |
-
gr.Markdown("#
|
160 |
-
|
161 |
with gr.Tab("Train Model"):
|
162 |
with gr.Row():
|
163 |
data_file = gr.File(label="Upload Data File (CSV, JSON, Excel)")
|
164 |
model_name = gr.Textbox(label="Model Name", value="gpt2")
|
165 |
output_dir = gr.Textbox(label="Output Directory", value="./fine-tuned-gpt2")
|
166 |
-
|
167 |
with gr.Row():
|
168 |
preset = gr.Radio(["Default", "Fast Training", "High Accuracy"], label="Preset")
|
169 |
epochs = gr.Number(label="Epochs", value=5)
|
170 |
batch_size = gr.Number(label="Batch Size", value=8)
|
171 |
learning_rate = gr.Number(label="Learning Rate", value=3e-5)
|
172 |
-
|
173 |
preset.change(set_preset, preset, [epochs, batch_size, learning_rate])
|
174 |
-
|
175 |
# Champs pour sélectionner les colonnes
|
176 |
with gr.Row():
|
177 |
-
|
178 |
description_col = gr.Dropdown(label="Description Column")
|
179 |
-
|
180 |
# Détection des colonnes lors du téléchargement du fichier
|
181 |
-
data_file.upload(read_file, inputs=data_file, outputs=[
|
182 |
-
|
183 |
train_button = gr.Button("Train Model")
|
184 |
train_output = gr.Textbox(label="Training Output")
|
185 |
train_graph = gr.Image(label="Training and Validation Loss Graph")
|
186 |
-
|
187 |
-
train_button.click(train_model,
|
188 |
-
|
|
|
|
|
189 |
with gr.Tab("Generate Text"):
|
190 |
with gr.Row():
|
191 |
with gr.Column():
|
192 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
|
193 |
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=50)
|
|
|
194 |
max_length = gr.Slider(label="Max Length", minimum=10, maximum=1024, value=128)
|
195 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2)
|
196 |
use_comma = gr.Checkbox(label="Use Comma", value=True)
|
197 |
-
|
|
|
198 |
with gr.Column():
|
199 |
prompt = gr.Textbox(label="Prompt")
|
200 |
generate_button = gr.Button("Generate Text")
|
201 |
-
generated_text = gr.Textbox(label="Generated Text")
|
202 |
-
|
203 |
-
generate_button.click(generate_text,
|
|
|
|
|
204 |
|
205 |
ui.launch()
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import json
|
9 |
import io
|
10 |
+
from datetime import datetime
|
11 |
|
12 |
# Variables globales pour stocker les colonnes détectées
|
13 |
columns = []
|
14 |
|
15 |
+
|
16 |
# Fonction pour lire le fichier et détecter les colonnes
|
17 |
def read_file(data_file):
|
18 |
global columns
|
|
|
27 |
df = pd.read_excel(data_file.name)
|
28 |
else:
|
29 |
return "Invalid file format. Please upload a CSV, JSON, or Excel file."
|
30 |
+
|
31 |
# Détecter les colonnes
|
32 |
columns = df.columns.tolist()
|
33 |
return columns
|
34 |
except Exception as e:
|
35 |
return f"An error occurred: {str(e)}"
|
36 |
|
37 |
+
|
38 |
+
# Fonction pour valider les colonnes sélectionnées
|
39 |
+
def validate_columns(prompt_col, description_col):
|
40 |
+
if prompt_col not in columns or description_col not in columns:
|
41 |
+
return False
|
42 |
+
return True
|
43 |
+
|
44 |
+
|
45 |
# Fonction pour entraîner le modèle
|
46 |
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col):
|
47 |
try:
|
48 |
+
# Valider les colonnes sélectionnées
|
49 |
+
if not validate_columns(prompt_col, description_col):
|
50 |
+
return "Invalid column selection. Please ensure the columns exist in the dataset."
|
51 |
+
|
52 |
# Charger les données
|
53 |
file_extension = os.path.splitext(data_file.name)[1]
|
54 |
if file_extension == '.csv':
|
|
|
57 |
df = pd.read_json(data_file.name)
|
58 |
elif file_extension == '.xlsx':
|
59 |
df = pd.read_excel(data_file.name)
|
60 |
+
|
61 |
# Prévisualisation des données
|
62 |
preview = df.head().to_string(index=False)
|
63 |
+
|
64 |
# Préparer le texte d'entraînement
|
65 |
df['text'] = df[prompt_col] + ': ' + df[description_col]
|
66 |
dataset = Dataset.from_pandas(df[['text']])
|
67 |
+
|
68 |
# Initialiser le tokenizer et le modèle GPT-2
|
69 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
70 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
71 |
+
|
72 |
# Ajouter un token de padding si nécessaire
|
73 |
if tokenizer.pad_token is None:
|
74 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
75 |
model.resize_token_embeddings(len(tokenizer))
|
76 |
+
|
77 |
# Tokenizer les données
|
78 |
def tokenize_function(examples):
|
79 |
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
|
80 |
tokens['labels'] = tokens['input_ids'].copy()
|
81 |
return tokens
|
82 |
+
|
83 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
84 |
+
|
85 |
# Ajustement des hyperparamètres
|
86 |
training_args = TrainingArguments(
|
87 |
output_dir=output_dir,
|
|
|
101 |
load_best_model_at_end=True,
|
102 |
metric_for_best_model="eval_loss"
|
103 |
)
|
104 |
+
|
105 |
# Configuration du Trainer
|
106 |
trainer = Trainer(
|
107 |
model=model,
|
|
|
109 |
train_dataset=tokenized_datasets,
|
110 |
eval_dataset=tokenized_datasets,
|
111 |
)
|
112 |
+
|
113 |
# Entraînement et évaluation
|
114 |
trainer.train()
|
115 |
eval_results = trainer.evaluate()
|
116 |
+
|
117 |
# Sauvegarder le modèle fine-tuné
|
118 |
model.save_pretrained(output_dir)
|
119 |
tokenizer.save_pretrained(output_dir)
|
120 |
+
|
121 |
# Générer un graphique des pertes d'entraînement et de validation
|
122 |
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
|
123 |
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
|
|
|
128 |
plt.title('Training and Validation Loss')
|
129 |
plt.legend()
|
130 |
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
|
131 |
+
|
132 |
return f"Training completed successfully.\nPreview of data:\n{preview}", eval_results
|
133 |
except Exception as e:
|
134 |
return f"An error occurred: {str(e)}"
|
135 |
|
136 |
+
|
137 |
# Fonction de génération de texte
|
138 |
+
def generate_text(prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma, batch_size):
|
139 |
try:
|
140 |
model_name = "./fine-tuned-gpt2"
|
141 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
142 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
143 |
+
|
144 |
if use_comma:
|
145 |
prompt = prompt.replace('.', ',')
|
146 |
+
|
147 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
148 |
attention_mask = inputs.attention_mask
|
149 |
outputs = model.generate(
|
150 |
+
inputs.input_ids,
|
151 |
attention_mask=attention_mask,
|
152 |
+
max_length=int(max_length),
|
153 |
+
temperature=float(temperature),
|
154 |
+
top_k=int(top_k),
|
155 |
+
top_p=float(top_p),
|
156 |
repetition_penalty=float(repetition_penalty),
|
157 |
+
num_return_sequences=int(batch_size),
|
158 |
pad_token_id=tokenizer.eos_token_id
|
159 |
)
|
160 |
+
|
161 |
+
return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
162 |
except Exception as e:
|
163 |
return f"An error occurred: {str(e)}"
|
164 |
|
165 |
+
|
166 |
# Fonction pour configurer les presets
|
167 |
def set_preset(preset):
|
168 |
if preset == "Default":
|
|
|
172 |
elif preset == "High Accuracy":
|
173 |
return 10, 4, 1e-5
|
174 |
|
175 |
+
|
176 |
# Interface Gradio
|
177 |
with gr.Blocks() as ui:
|
178 |
+
gr.Markdown("# Fine-Tune GPT-2 UI Design Model")
|
179 |
+
|
180 |
with gr.Tab("Train Model"):
|
181 |
with gr.Row():
|
182 |
data_file = gr.File(label="Upload Data File (CSV, JSON, Excel)")
|
183 |
model_name = gr.Textbox(label="Model Name", value="gpt2")
|
184 |
output_dir = gr.Textbox(label="Output Directory", value="./fine-tuned-gpt2")
|
185 |
+
|
186 |
with gr.Row():
|
187 |
preset = gr.Radio(["Default", "Fast Training", "High Accuracy"], label="Preset")
|
188 |
epochs = gr.Number(label="Epochs", value=5)
|
189 |
batch_size = gr.Number(label="Batch Size", value=8)
|
190 |
learning_rate = gr.Number(label="Learning Rate", value=3e-5)
|
191 |
+
|
192 |
preset.change(set_preset, preset, [epochs, batch_size, learning_rate])
|
193 |
+
|
194 |
# Champs pour sélectionner les colonnes
|
195 |
with gr.Row():
|
196 |
+
prompt_col = gr.Dropdown(label="Prompt Column")
|
197 |
description_col = gr.Dropdown(label="Description Column")
|
198 |
+
|
199 |
# Détection des colonnes lors du téléchargement du fichier
|
200 |
+
data_file.upload(read_file, inputs=data_file, outputs=[prompt_col, description_col])
|
201 |
+
|
202 |
train_button = gr.Button("Train Model")
|
203 |
train_output = gr.Textbox(label="Training Output")
|
204 |
train_graph = gr.Image(label="Training and Validation Loss Graph")
|
205 |
+
|
206 |
+
train_button.click(train_model,
|
207 |
+
inputs=[data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col,
|
208 |
+
description_col], outputs=[train_output, train_graph])
|
209 |
+
|
210 |
with gr.Tab("Generate Text"):
|
211 |
with gr.Row():
|
212 |
with gr.Column():
|
213 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
|
214 |
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=50)
|
215 |
+
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9)
|
216 |
max_length = gr.Slider(label="Max Length", minimum=10, maximum=1024, value=128)
|
217 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2)
|
218 |
use_comma = gr.Checkbox(label="Use Comma", value=True)
|
219 |
+
batch_size = gr.Number(label="Batch Size", value=1, minimum=1)
|
220 |
+
|
221 |
with gr.Column():
|
222 |
prompt = gr.Textbox(label="Prompt")
|
223 |
generate_button = gr.Button("Generate Text")
|
224 |
+
generated_text = gr.Textbox(label="Generated Text", lines=20)
|
225 |
+
|
226 |
+
generate_button.click(generate_text,
|
227 |
+
inputs=[prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma,
|
228 |
+
batch_size], outputs=generated_text)
|
229 |
|
230 |
ui.launch()
|