Upload folder using huggingface_hub
Browse files- infer/infer-pm-index256.py +199 -0
- infer/train-index -v2.py +44 -0
- infer/train-index.py +36 -0
- infer/trans_weights.py +16 -0
infer/infer-pm-index256.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
|
| 3 |
+
对源特征进行检索
|
| 4 |
+
"""
|
| 5 |
+
import torch, pdb, os, parselmouth
|
| 6 |
+
|
| 7 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 8 |
+
import numpy as np
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
|
| 11 |
+
# from models import SynthesizerTrn256#hifigan_nonsf
|
| 12 |
+
# from infer_pack.models import SynthesizerTrn256NSF as SynthesizerTrn256#hifigan_nsf
|
| 13 |
+
from infer_pack.models import (
|
| 14 |
+
SynthesizerTrnMs256NSFsid as SynthesizerTrn256,
|
| 15 |
+
) # hifigan_nsf
|
| 16 |
+
|
| 17 |
+
# from infer_pack.models import SynthesizerTrnMs256NSFsid_sim as SynthesizerTrn256#hifigan_nsf
|
| 18 |
+
# from models import SynthesizerTrn256NSFsim as SynthesizerTrn256#hifigan_nsf
|
| 19 |
+
# from models import SynthesizerTrn256NSFsimFlow as SynthesizerTrn256#hifigan_nsf
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
from scipy.io import wavfile
|
| 23 |
+
from fairseq import checkpoint_utils
|
| 24 |
+
|
| 25 |
+
# import pyworld
|
| 26 |
+
import librosa
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
import scipy.signal as signal
|
| 29 |
+
|
| 30 |
+
# import torchcrepe
|
| 31 |
+
from time import time as ttime
|
| 32 |
+
|
| 33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 34 |
+
model_path = r"E:\codes\py39\vits_vc_gpu_train\hubert_base.pt" #
|
| 35 |
+
print("load model(s) from {}".format(model_path))
|
| 36 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
| 37 |
+
[model_path],
|
| 38 |
+
suffix="",
|
| 39 |
+
)
|
| 40 |
+
model = models[0]
|
| 41 |
+
model = model.to(device)
|
| 42 |
+
model = model.half()
|
| 43 |
+
model.eval()
|
| 44 |
+
|
| 45 |
+
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],183,256,is_half=True)#hifigan#512#256
|
| 46 |
+
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],109,256,is_half=True)#hifigan#512#256
|
| 47 |
+
net_g = SynthesizerTrn256(
|
| 48 |
+
1025,
|
| 49 |
+
32,
|
| 50 |
+
192,
|
| 51 |
+
192,
|
| 52 |
+
768,
|
| 53 |
+
2,
|
| 54 |
+
6,
|
| 55 |
+
3,
|
| 56 |
+
0,
|
| 57 |
+
"1",
|
| 58 |
+
[3, 7, 11],
|
| 59 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 60 |
+
[10, 10, 2, 2],
|
| 61 |
+
512,
|
| 62 |
+
[16, 16, 4, 4],
|
| 63 |
+
183,
|
| 64 |
+
256,
|
| 65 |
+
is_half=True,
|
| 66 |
+
) # hifigan#512#256#no_dropout
|
| 67 |
+
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,3,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],0)#ts3
|
| 68 |
+
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2],512,[16,16,4],0)#hifigan-ps-sr
|
| 69 |
+
#
|
| 70 |
+
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [5,5], 512, [15,15], 0)#ms
|
| 71 |
+
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,10], 512, [16,16], 0)#idwt2
|
| 72 |
+
|
| 73 |
+
# weights=torch.load("infer/ft-mi_1k-noD.pt")
|
| 74 |
+
# weights=torch.load("infer/ft-mi-freeze-vocoder-flow-enc_q_1k.pt")
|
| 75 |
+
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
|
| 76 |
+
# weights=torch.load("infer/ft-mi-sim1k.pt")
|
| 77 |
+
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
|
| 78 |
+
print(net_g.load_state_dict(weights, strict=True))
|
| 79 |
+
|
| 80 |
+
net_g.eval().to(device)
|
| 81 |
+
net_g.half()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_f0(x, p_len, f0_up_key=0):
|
| 85 |
+
time_step = 160 / 16000 * 1000
|
| 86 |
+
f0_min = 50
|
| 87 |
+
f0_max = 1100
|
| 88 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 89 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 90 |
+
|
| 91 |
+
f0 = (
|
| 92 |
+
parselmouth.Sound(x, 16000)
|
| 93 |
+
.to_pitch_ac(
|
| 94 |
+
time_step=time_step / 1000,
|
| 95 |
+
voicing_threshold=0.6,
|
| 96 |
+
pitch_floor=f0_min,
|
| 97 |
+
pitch_ceiling=f0_max,
|
| 98 |
+
)
|
| 99 |
+
.selected_array["frequency"]
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 103 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 104 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
| 105 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 106 |
+
f0bak = f0.copy()
|
| 107 |
+
|
| 108 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 109 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 110 |
+
f0_mel_max - f0_mel_min
|
| 111 |
+
) + 1
|
| 112 |
+
f0_mel[f0_mel <= 1] = 1
|
| 113 |
+
f0_mel[f0_mel > 255] = 255
|
| 114 |
+
# f0_mel[f0_mel > 188] = 188
|
| 115 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 116 |
+
return f0_coarse, f0bak
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
import faiss
|
| 120 |
+
|
| 121 |
+
index = faiss.read_index("infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
| 122 |
+
big_npy = np.load("infer/big_src_feature_mi.npy")
|
| 123 |
+
ta0 = ta1 = ta2 = 0
|
| 124 |
+
for idx, name in enumerate(
|
| 125 |
+
[
|
| 126 |
+
"冬之花clip1.wav",
|
| 127 |
+
]
|
| 128 |
+
): ##
|
| 129 |
+
wav_path = "todo-songs/%s" % name #
|
| 130 |
+
f0_up_key = -2 #
|
| 131 |
+
audio, sampling_rate = sf.read(wav_path)
|
| 132 |
+
if len(audio.shape) > 1:
|
| 133 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 134 |
+
if sampling_rate != 16000:
|
| 135 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
| 136 |
+
|
| 137 |
+
feats = torch.from_numpy(audio).float()
|
| 138 |
+
if feats.dim() == 2: # double channels
|
| 139 |
+
feats = feats.mean(-1)
|
| 140 |
+
assert feats.dim() == 1, feats.dim()
|
| 141 |
+
feats = feats.view(1, -1)
|
| 142 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
| 143 |
+
inputs = {
|
| 144 |
+
"source": feats.half().to(device),
|
| 145 |
+
"padding_mask": padding_mask.to(device),
|
| 146 |
+
"output_layer": 9, # layer 9
|
| 147 |
+
}
|
| 148 |
+
if torch.cuda.is_available():
|
| 149 |
+
torch.cuda.synchronize()
|
| 150 |
+
t0 = ttime()
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
logits = model.extract_features(**inputs)
|
| 153 |
+
feats = model.final_proj(logits[0])
|
| 154 |
+
|
| 155 |
+
####索引优化
|
| 156 |
+
npy = feats[0].cpu().numpy().astype("float32")
|
| 157 |
+
D, I = index.search(npy, 1)
|
| 158 |
+
feats = (
|
| 159 |
+
torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device)
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 163 |
+
if torch.cuda.is_available():
|
| 164 |
+
torch.cuda.synchronize()
|
| 165 |
+
t1 = ttime()
|
| 166 |
+
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
|
| 167 |
+
p_len = min(feats.shape[1], 10000) #
|
| 168 |
+
pitch, pitchf = get_f0(audio, p_len, f0_up_key)
|
| 169 |
+
p_len = min(feats.shape[1], 10000, pitch.shape[0]) # 太大了爆显存
|
| 170 |
+
if torch.cuda.is_available():
|
| 171 |
+
torch.cuda.synchronize()
|
| 172 |
+
t2 = ttime()
|
| 173 |
+
feats = feats[:, :p_len, :]
|
| 174 |
+
pitch = pitch[:p_len]
|
| 175 |
+
pitchf = pitchf[:p_len]
|
| 176 |
+
p_len = torch.LongTensor([p_len]).to(device)
|
| 177 |
+
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
|
| 178 |
+
sid = torch.LongTensor([0]).to(device)
|
| 179 |
+
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
audio = (
|
| 182 |
+
net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
| 183 |
+
.data.cpu()
|
| 184 |
+
.float()
|
| 185 |
+
.numpy()
|
| 186 |
+
) # nsf
|
| 187 |
+
if torch.cuda.is_available():
|
| 188 |
+
torch.cuda.synchronize()
|
| 189 |
+
t3 = ttime()
|
| 190 |
+
ta0 += t1 - t0
|
| 191 |
+
ta1 += t2 - t1
|
| 192 |
+
ta2 += t3 - t2
|
| 193 |
+
# wavfile.write("ft-mi_1k-index256-noD-%s.wav"%name, 40000, audio)##
|
| 194 |
+
# wavfile.write("ft-mi-freeze-vocoder-flow-enc_q_1k-%s.wav"%name, 40000, audio)##
|
| 195 |
+
# wavfile.write("ft-mi-sim1k-%s.wav"%name, 40000, audio)##
|
| 196 |
+
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
print(ta0, ta1, ta2) #
|
infer/train-index -v2.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
|
| 3 |
+
"""
|
| 4 |
+
import faiss, numpy as np, os
|
| 5 |
+
|
| 6 |
+
# ###########如果是原始特征要先写save
|
| 7 |
+
inp_root = r"./logs/nene/3_feature768"
|
| 8 |
+
npys = []
|
| 9 |
+
listdir_res = list(os.listdir(inp_root))
|
| 10 |
+
for name in sorted(listdir_res):
|
| 11 |
+
phone = np.load("%s/%s" % (inp_root, name))
|
| 12 |
+
npys.append(phone)
|
| 13 |
+
big_npy = np.concatenate(npys, 0)
|
| 14 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 15 |
+
np.random.shuffle(big_npy_idx)
|
| 16 |
+
big_npy = big_npy[big_npy_idx]
|
| 17 |
+
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
| 18 |
+
np.save("infer/big_src_feature_mi.npy", big_npy)
|
| 19 |
+
|
| 20 |
+
##################train+add
|
| 21 |
+
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
| 22 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 23 |
+
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi
|
| 24 |
+
print("training")
|
| 25 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 26 |
+
index_ivf.nprobe = 1
|
| 27 |
+
index.train(big_npy)
|
| 28 |
+
faiss.write_index(
|
| 29 |
+
index, "infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf)
|
| 30 |
+
)
|
| 31 |
+
print("adding")
|
| 32 |
+
batch_size_add = 8192
|
| 33 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 34 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 35 |
+
faiss.write_index(index, "infer/added_IVF%s_Flat_mi_baseline_src_feat.index" % (n_ivf))
|
| 36 |
+
"""
|
| 37 |
+
大小(都是FP32)
|
| 38 |
+
big_src_feature 2.95G
|
| 39 |
+
(3098036, 256)
|
| 40 |
+
big_emb 4.43G
|
| 41 |
+
(6196072, 192)
|
| 42 |
+
big_emb双倍是因为求特征要repeat后再加pitch
|
| 43 |
+
|
| 44 |
+
"""
|
infer/train-index.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
|
| 3 |
+
"""
|
| 4 |
+
import faiss, numpy as np, os
|
| 5 |
+
|
| 6 |
+
# ###########如果是原始特征要先写save
|
| 7 |
+
inp_root = r"E:\codes\py39\dataset\mi\2-co256"
|
| 8 |
+
npys = []
|
| 9 |
+
for name in sorted(list(os.listdir(inp_root))):
|
| 10 |
+
phone = np.load("%s/%s" % (inp_root, name))
|
| 11 |
+
npys.append(phone)
|
| 12 |
+
big_npy = np.concatenate(npys, 0)
|
| 13 |
+
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
| 14 |
+
np.save("infer/big_src_feature_mi.npy", big_npy)
|
| 15 |
+
|
| 16 |
+
##################train+add
|
| 17 |
+
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
| 18 |
+
print(big_npy.shape)
|
| 19 |
+
index = faiss.index_factory(256, "IVF512,Flat") # mi
|
| 20 |
+
print("training")
|
| 21 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 22 |
+
index_ivf.nprobe = 9
|
| 23 |
+
index.train(big_npy)
|
| 24 |
+
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
|
| 25 |
+
print("adding")
|
| 26 |
+
index.add(big_npy)
|
| 27 |
+
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
| 28 |
+
"""
|
| 29 |
+
大小(都是FP32)
|
| 30 |
+
big_src_feature 2.95G
|
| 31 |
+
(3098036, 256)
|
| 32 |
+
big_emb 4.43G
|
| 33 |
+
(6196072, 192)
|
| 34 |
+
big_emb双倍是因为求特征要repeat后再加pitch
|
| 35 |
+
|
| 36 |
+
"""
|
infer/trans_weights.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, pdb
|
| 2 |
+
|
| 3 |
+
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-suc\G_1000.pth")["model"]#sim_nsf#
|
| 4 |
+
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder-flow-enc_q\G_1000.pth")["model"]#sim_nsf#
|
| 5 |
+
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder\G_1000.pth")["model"]#sim_nsf#
|
| 6 |
+
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-test\G_1000.pth")["model"]#sim_nsf#
|
| 7 |
+
a = torch.load(
|
| 8 |
+
r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-no_opt-no_dropout\G_1000.pth"
|
| 9 |
+
)[
|
| 10 |
+
"model"
|
| 11 |
+
] # sim_nsf#
|
| 12 |
+
for key in a.keys():
|
| 13 |
+
a[key] = a[key].half()
|
| 14 |
+
# torch.save(a,"ft-mi-freeze-vocoder_true_1k.pt")#
|
| 15 |
+
# torch.save(a,"ft-mi-sim1k.pt")#
|
| 16 |
+
torch.save(a, "ft-mi-no_opt-no_dropout.pt") #
|