Update train/utils.py
Browse files- train/utils.py +486 -486
train/utils.py
CHANGED
|
@@ -1,486 +1,486 @@
|
|
| 1 |
-
import os, traceback
|
| 2 |
-
import glob
|
| 3 |
-
import sys
|
| 4 |
-
import argparse
|
| 5 |
-
import logging
|
| 6 |
-
import json
|
| 7 |
-
import subprocess
|
| 8 |
-
import numpy as np
|
| 9 |
-
from scipy.io.wavfile import read
|
| 10 |
-
import torch
|
| 11 |
-
|
| 12 |
-
MATPLOTLIB_FLAG = False
|
| 13 |
-
|
| 14 |
-
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
| 15 |
-
logger = logging
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
| 19 |
-
assert os.path.isfile(checkpoint_path)
|
| 20 |
-
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 21 |
-
|
| 22 |
-
##################
|
| 23 |
-
def go(model, bkey):
|
| 24 |
-
saved_state_dict = checkpoint_dict[bkey]
|
| 25 |
-
if hasattr(model, "module"):
|
| 26 |
-
state_dict = model.module.state_dict()
|
| 27 |
-
else:
|
| 28 |
-
state_dict = model.state_dict()
|
| 29 |
-
new_state_dict = {}
|
| 30 |
-
for k, v in state_dict.items(): #
|
| 31 |
-
try:
|
| 32 |
-
new_state_dict[k] = saved_state_dict[k]
|
| 33 |
-
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 34 |
-
print(
|
| 35 |
-
"shape-%s-mismatch|need-%s|get-%s"
|
| 36 |
-
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
| 37 |
-
) #
|
| 38 |
-
raise KeyError
|
| 39 |
-
except:
|
| 40 |
-
# logger.info(traceback.format_exc())
|
| 41 |
-
logger.info("%s is not in the checkpoint" % k) # pretrain
|
| 42 |
-
new_state_dict[k] = v #
|
| 43 |
-
if hasattr(model, "module"):
|
| 44 |
-
model.module.load_state_dict(new_state_dict, strict=False)
|
| 45 |
-
else:
|
| 46 |
-
model.load_state_dict(new_state_dict, strict=False)
|
| 47 |
-
|
| 48 |
-
go(combd, "combd")
|
| 49 |
-
go(sbd, "sbd")
|
| 50 |
-
#############
|
| 51 |
-
logger.info("Loaded model weights")
|
| 52 |
-
|
| 53 |
-
iteration = checkpoint_dict["iteration"]
|
| 54 |
-
learning_rate = checkpoint_dict["learning_rate"]
|
| 55 |
-
if (
|
| 56 |
-
optimizer is not None and load_opt == 1
|
| 57 |
-
):
|
| 58 |
-
# try:
|
| 59 |
-
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
| 60 |
-
# except:
|
| 61 |
-
# traceback.print_exc()
|
| 62 |
-
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
| 63 |
-
return model, optimizer, learning_rate, iteration
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
| 67 |
-
# assert os.path.isfile(checkpoint_path)
|
| 68 |
-
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
| 69 |
-
# iteration = checkpoint_dict['iteration']
|
| 70 |
-
# learning_rate = checkpoint_dict['learning_rate']
|
| 71 |
-
# if optimizer is not None:
|
| 72 |
-
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
| 73 |
-
# # print(1111)
|
| 74 |
-
# saved_state_dict = checkpoint_dict['model']
|
| 75 |
-
# # print(1111)
|
| 76 |
-
#
|
| 77 |
-
# if hasattr(model, 'module'):
|
| 78 |
-
# state_dict = model.module.state_dict()
|
| 79 |
-
# else:
|
| 80 |
-
# state_dict = model.state_dict()
|
| 81 |
-
# new_state_dict= {}
|
| 82 |
-
# for k, v in state_dict.items():
|
| 83 |
-
# try:
|
| 84 |
-
# new_state_dict[k] = saved_state_dict[k]
|
| 85 |
-
# except:
|
| 86 |
-
# logger.info("%s is not in the checkpoint" % k)
|
| 87 |
-
# new_state_dict[k] = v
|
| 88 |
-
# if hasattr(model, 'module'):
|
| 89 |
-
# model.module.load_state_dict(new_state_dict)
|
| 90 |
-
# else:
|
| 91 |
-
# model.load_state_dict(new_state_dict)
|
| 92 |
-
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
| 93 |
-
# checkpoint_path, iteration))
|
| 94 |
-
# return model, optimizer, learning_rate, iteration
|
| 95 |
-
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
| 96 |
-
assert os.path.isfile(checkpoint_path)
|
| 97 |
-
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 98 |
-
|
| 99 |
-
saved_state_dict = checkpoint_dict["model"]
|
| 100 |
-
if hasattr(model, "module"):
|
| 101 |
-
state_dict = model.module.state_dict()
|
| 102 |
-
else:
|
| 103 |
-
state_dict = model.state_dict()
|
| 104 |
-
new_state_dict = {}
|
| 105 |
-
for k, v in state_dict.items(): #
|
| 106 |
-
try:
|
| 107 |
-
new_state_dict[k] = saved_state_dict[k]
|
| 108 |
-
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 109 |
-
print(
|
| 110 |
-
"shape-%s-mismatch|need-%s|get-%s"
|
| 111 |
-
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
| 112 |
-
) #
|
| 113 |
-
raise KeyError
|
| 114 |
-
except:
|
| 115 |
-
# logger.info(traceback.format_exc())
|
| 116 |
-
logger.info("%s is not in the checkpoint" % k) # pretrain
|
| 117 |
-
new_state_dict[k] = v #
|
| 118 |
-
if hasattr(model, "module"):
|
| 119 |
-
model.module.load_state_dict(new_state_dict, strict=False)
|
| 120 |
-
else:
|
| 121 |
-
model.load_state_dict(new_state_dict, strict=False)
|
| 122 |
-
logger.info("Loaded model weights")
|
| 123 |
-
|
| 124 |
-
iteration = checkpoint_dict["iteration"]
|
| 125 |
-
learning_rate = checkpoint_dict["learning_rate"]
|
| 126 |
-
if (
|
| 127 |
-
optimizer is not None and load_opt == 1
|
| 128 |
-
):
|
| 129 |
-
# try:
|
| 130 |
-
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
| 131 |
-
# except:
|
| 132 |
-
# traceback.print_exc()
|
| 133 |
-
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
| 134 |
-
return model, optimizer, learning_rate, iteration
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
| 138 |
-
logger.info(
|
| 139 |
-
"Saving model and optimizer state at epoch {} to {}".format(
|
| 140 |
-
iteration, checkpoint_path
|
| 141 |
-
)
|
| 142 |
-
)
|
| 143 |
-
if hasattr(model, "module"):
|
| 144 |
-
state_dict = model.module.state_dict()
|
| 145 |
-
else:
|
| 146 |
-
state_dict = model.state_dict()
|
| 147 |
-
torch.save(
|
| 148 |
-
{
|
| 149 |
-
"model": state_dict,
|
| 150 |
-
"iteration": iteration,
|
| 151 |
-
"optimizer": optimizer.state_dict(),
|
| 152 |
-
"learning_rate": learning_rate,
|
| 153 |
-
},
|
| 154 |
-
checkpoint_path,
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
| 159 |
-
logger.info(
|
| 160 |
-
"Saving model and optimizer state at epoch {} to {}".format(
|
| 161 |
-
iteration, checkpoint_path
|
| 162 |
-
)
|
| 163 |
-
)
|
| 164 |
-
if hasattr(combd, "module"):
|
| 165 |
-
state_dict_combd = combd.module.state_dict()
|
| 166 |
-
else:
|
| 167 |
-
state_dict_combd = combd.state_dict()
|
| 168 |
-
if hasattr(sbd, "module"):
|
| 169 |
-
state_dict_sbd = sbd.module.state_dict()
|
| 170 |
-
else:
|
| 171 |
-
state_dict_sbd = sbd.state_dict()
|
| 172 |
-
torch.save(
|
| 173 |
-
{
|
| 174 |
-
"combd": state_dict_combd,
|
| 175 |
-
"sbd": state_dict_sbd,
|
| 176 |
-
"iteration": iteration,
|
| 177 |
-
"optimizer": optimizer.state_dict(),
|
| 178 |
-
"learning_rate": learning_rate,
|
| 179 |
-
},
|
| 180 |
-
checkpoint_path,
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
def summarize(
|
| 185 |
-
writer,
|
| 186 |
-
global_step,
|
| 187 |
-
scalars={},
|
| 188 |
-
histograms={},
|
| 189 |
-
images={},
|
| 190 |
-
audios={},
|
| 191 |
-
audio_sampling_rate=22050,
|
| 192 |
-
):
|
| 193 |
-
for k, v in scalars.items():
|
| 194 |
-
writer.add_scalar(k, v, global_step)
|
| 195 |
-
for k, v in histograms.items():
|
| 196 |
-
writer.add_histogram(k, v, global_step)
|
| 197 |
-
for k, v in images.items():
|
| 198 |
-
writer.add_image(k, v, global_step, dataformats="HWC")
|
| 199 |
-
for k, v in audios.items():
|
| 200 |
-
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
| 204 |
-
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 205 |
-
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
| 206 |
-
x = f_list[-1]
|
| 207 |
-
print(x)
|
| 208 |
-
return x
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
def plot_spectrogram_to_numpy(spectrogram):
|
| 212 |
-
global MATPLOTLIB_FLAG
|
| 213 |
-
if not MATPLOTLIB_FLAG:
|
| 214 |
-
import matplotlib
|
| 215 |
-
|
| 216 |
-
matplotlib.use("Agg")
|
| 217 |
-
MATPLOTLIB_FLAG = True
|
| 218 |
-
mpl_logger = logging.getLogger("matplotlib")
|
| 219 |
-
mpl_logger.setLevel(logging.WARNING)
|
| 220 |
-
import matplotlib.pylab as plt
|
| 221 |
-
import numpy as np
|
| 222 |
-
|
| 223 |
-
fig, ax = plt.subplots(figsize=(10, 2))
|
| 224 |
-
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
| 225 |
-
plt.colorbar(im, ax=ax)
|
| 226 |
-
plt.xlabel("Frames")
|
| 227 |
-
plt.ylabel("Channels")
|
| 228 |
-
plt.tight_layout()
|
| 229 |
-
|
| 230 |
-
fig.canvas.draw()
|
| 231 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 232 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 233 |
-
plt.close()
|
| 234 |
-
return data
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
def plot_alignment_to_numpy(alignment, info=None):
|
| 238 |
-
global MATPLOTLIB_FLAG
|
| 239 |
-
if not MATPLOTLIB_FLAG:
|
| 240 |
-
import matplotlib
|
| 241 |
-
|
| 242 |
-
matplotlib.use("Agg")
|
| 243 |
-
MATPLOTLIB_FLAG = True
|
| 244 |
-
mpl_logger = logging.getLogger("matplotlib")
|
| 245 |
-
mpl_logger.setLevel(logging.WARNING)
|
| 246 |
-
import matplotlib.pylab as plt
|
| 247 |
-
import numpy as np
|
| 248 |
-
|
| 249 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
| 250 |
-
im = ax.imshow(
|
| 251 |
-
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
| 252 |
-
)
|
| 253 |
-
fig.colorbar(im, ax=ax)
|
| 254 |
-
xlabel = "Decoder timestep"
|
| 255 |
-
if info is not None:
|
| 256 |
-
xlabel += "\n\n" + info
|
| 257 |
-
plt.xlabel(xlabel)
|
| 258 |
-
plt.ylabel("Encoder timestep")
|
| 259 |
-
plt.tight_layout()
|
| 260 |
-
|
| 261 |
-
fig.canvas.draw()
|
| 262 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 263 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 264 |
-
plt.close()
|
| 265 |
-
return data
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
def load_wav_to_torch(full_path):
|
| 269 |
-
sampling_rate, data = read(full_path)
|
| 270 |
-
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
def load_filepaths_and_text(filename, split="|"):
|
| 274 |
-
with open(filename, encoding="utf-8") as f:
|
| 275 |
-
filepaths_and_text = [line.strip().split(split) for line in f]
|
| 276 |
-
return filepaths_and_text
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
def get_hparams(init=True):
|
| 280 |
-
"""
|
| 281 |
-
todo:
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
"""
|
| 296 |
-
parser = argparse.ArgumentParser()
|
| 297 |
-
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
|
| 298 |
-
parser.add_argument(
|
| 299 |
-
"-se",
|
| 300 |
-
"--save_every_epoch",
|
| 301 |
-
type=int,
|
| 302 |
-
required=True,
|
| 303 |
-
help="checkpoint save frequency (epoch)",
|
| 304 |
-
)
|
| 305 |
-
parser.add_argument(
|
| 306 |
-
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
| 307 |
-
)
|
| 308 |
-
parser.add_argument(
|
| 309 |
-
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path"
|
| 310 |
-
)
|
| 311 |
-
parser.add_argument(
|
| 312 |
-
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path"
|
| 313 |
-
)
|
| 314 |
-
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
| 315 |
-
parser.add_argument(
|
| 316 |
-
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
| 317 |
-
)
|
| 318 |
-
parser.add_argument(
|
| 319 |
-
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
| 320 |
-
) # -m
|
| 321 |
-
parser.add_argument(
|
| 322 |
-
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
| 323 |
-
)
|
| 324 |
-
parser.add_argument(
|
| 325 |
-
"-sw",
|
| 326 |
-
"--save_every_weights",
|
| 327 |
-
type=str,
|
| 328 |
-
default="0",
|
| 329 |
-
help="save the extracted model in weights directory when saving checkpoints",
|
| 330 |
-
)
|
| 331 |
-
parser.add_argument(
|
| 332 |
-
"-v", "--version", type=str, required=True, help="model version"
|
| 333 |
-
)
|
| 334 |
-
parser.add_argument(
|
| 335 |
-
"-f0",
|
| 336 |
-
"--if_f0",
|
| 337 |
-
type=int,
|
| 338 |
-
required=True,
|
| 339 |
-
help="use f0 as one of the inputs of the model, 1 or 0",
|
| 340 |
-
)
|
| 341 |
-
parser.add_argument(
|
| 342 |
-
"-l",
|
| 343 |
-
"--if_latest",
|
| 344 |
-
type=int,
|
| 345 |
-
required=True,
|
| 346 |
-
help="if only save the latest G/D pth file, 1 or 0",
|
| 347 |
-
)
|
| 348 |
-
parser.add_argument(
|
| 349 |
-
"-c",
|
| 350 |
-
"--if_cache_data_in_gpu",
|
| 351 |
-
type=int,
|
| 352 |
-
required=True,
|
| 353 |
-
help="if caching the dataset in GPU memory, 1 or 0",
|
| 354 |
-
)
|
| 355 |
-
|
| 356 |
-
args = parser.parse_args()
|
| 357 |
-
name = args.experiment_dir
|
| 358 |
-
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
| 359 |
-
|
| 360 |
-
if not os.path.exists(experiment_dir):
|
| 361 |
-
os.makedirs(experiment_dir)
|
| 362 |
-
|
| 363 |
-
if args.version == "v1" or args.sample_rate == "40k":
|
| 364 |
-
config_path = "configs/%s.json" % args.sample_rate
|
| 365 |
-
else:
|
| 366 |
-
config_path = "configs/%s_v2.json" % args.sample_rate
|
| 367 |
-
config_save_path = os.path.join(experiment_dir, "config.json")
|
| 368 |
-
if init:
|
| 369 |
-
with open(config_path, "r") as f:
|
| 370 |
-
data = f.read()
|
| 371 |
-
with open(config_save_path, "w") as f:
|
| 372 |
-
f.write(data)
|
| 373 |
-
else:
|
| 374 |
-
with open(config_save_path, "r") as f:
|
| 375 |
-
data = f.read()
|
| 376 |
-
config = json.loads(data)
|
| 377 |
-
|
| 378 |
-
hparams = HParams(**config)
|
| 379 |
-
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
| 380 |
-
hparams.save_every_epoch = args.save_every_epoch
|
| 381 |
-
hparams.name = name
|
| 382 |
-
hparams.total_epoch = args.total_epoch
|
| 383 |
-
hparams.pretrainG = args.pretrainG
|
| 384 |
-
hparams.pretrainD = args.pretrainD
|
| 385 |
-
hparams.version = args.version
|
| 386 |
-
hparams.gpus = args.gpus
|
| 387 |
-
hparams.train.batch_size = args.batch_size
|
| 388 |
-
hparams.sample_rate = args.sample_rate
|
| 389 |
-
hparams.if_f0 = args.if_f0
|
| 390 |
-
hparams.if_latest = args.if_latest
|
| 391 |
-
hparams.save_every_weights = args.save_every_weights
|
| 392 |
-
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
| 393 |
-
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
| 394 |
-
return hparams
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
def get_hparams_from_dir(model_dir):
|
| 398 |
-
config_save_path = os.path.join(model_dir, "config.json")
|
| 399 |
-
with open(config_save_path, "r") as f:
|
| 400 |
-
data = f.read()
|
| 401 |
-
config = json.loads(data)
|
| 402 |
-
|
| 403 |
-
hparams = HParams(**config)
|
| 404 |
-
hparams.model_dir = model_dir
|
| 405 |
-
return hparams
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
def get_hparams_from_file(config_path):
|
| 409 |
-
with open(config_path, "r") as f:
|
| 410 |
-
data = f.read()
|
| 411 |
-
config = json.loads(data)
|
| 412 |
-
|
| 413 |
-
hparams = HParams(**config)
|
| 414 |
-
return hparams
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
def check_git_hash(model_dir):
|
| 418 |
-
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 419 |
-
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 420 |
-
logger.warn(
|
| 421 |
-
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 422 |
-
source_dir
|
| 423 |
-
)
|
| 424 |
-
)
|
| 425 |
-
return
|
| 426 |
-
|
| 427 |
-
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
| 428 |
-
|
| 429 |
-
path = os.path.join(model_dir, "githash")
|
| 430 |
-
if os.path.exists(path):
|
| 431 |
-
saved_hash = open(path).read()
|
| 432 |
-
if saved_hash != cur_hash:
|
| 433 |
-
logger.warn(
|
| 434 |
-
"git hash values are different. {}(saved) != {}(current)".format(
|
| 435 |
-
saved_hash[:8], cur_hash[:8]
|
| 436 |
-
)
|
| 437 |
-
)
|
| 438 |
-
else:
|
| 439 |
-
open(path, "w").write(cur_hash)
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
def get_logger(model_dir, filename="train.log"):
|
| 443 |
-
global logger
|
| 444 |
-
logger = logging.getLogger(os.path.basename(model_dir))
|
| 445 |
-
logger.setLevel(logging.DEBUG)
|
| 446 |
-
|
| 447 |
-
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
| 448 |
-
if not os.path.exists(model_dir):
|
| 449 |
-
os.makedirs(model_dir)
|
| 450 |
-
h = logging.FileHandler(os.path.join(model_dir, filename))
|
| 451 |
-
h.setLevel(logging.DEBUG)
|
| 452 |
-
h.setFormatter(formatter)
|
| 453 |
-
logger.addHandler(h)
|
| 454 |
-
return logger
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
class HParams:
|
| 458 |
-
def __init__(self, **kwargs):
|
| 459 |
-
for k, v in kwargs.items():
|
| 460 |
-
if type(v) == dict:
|
| 461 |
-
v = HParams(**v)
|
| 462 |
-
self[k] = v
|
| 463 |
-
|
| 464 |
-
def keys(self):
|
| 465 |
-
return self.__dict__.keys()
|
| 466 |
-
|
| 467 |
-
def items(self):
|
| 468 |
-
return self.__dict__.items()
|
| 469 |
-
|
| 470 |
-
def values(self):
|
| 471 |
-
return self.__dict__.values()
|
| 472 |
-
|
| 473 |
-
def __len__(self):
|
| 474 |
-
return len(self.__dict__)
|
| 475 |
-
|
| 476 |
-
def __getitem__(self, key):
|
| 477 |
-
return getattr(self, key)
|
| 478 |
-
|
| 479 |
-
def __setitem__(self, key, value):
|
| 480 |
-
return setattr(self, key, value)
|
| 481 |
-
|
| 482 |
-
def __contains__(self, key):
|
| 483 |
-
return key in self.__dict__
|
| 484 |
-
|
| 485 |
-
def __repr__(self):
|
| 486 |
-
return self.__dict__.__repr__()
|
|
|
|
| 1 |
+
import os, traceback
|
| 2 |
+
import glob
|
| 3 |
+
import sys
|
| 4 |
+
import argparse
|
| 5 |
+
import logging
|
| 6 |
+
import json
|
| 7 |
+
import subprocess
|
| 8 |
+
import numpy as np
|
| 9 |
+
from scipy.io.wavfile import read
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
MATPLOTLIB_FLAG = False
|
| 13 |
+
|
| 14 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
| 15 |
+
logger = logging
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
| 19 |
+
assert os.path.isfile(checkpoint_path)
|
| 20 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 21 |
+
|
| 22 |
+
##################
|
| 23 |
+
def go(model, bkey):
|
| 24 |
+
saved_state_dict = checkpoint_dict[bkey]
|
| 25 |
+
if hasattr(model, "module"):
|
| 26 |
+
state_dict = model.module.state_dict()
|
| 27 |
+
else:
|
| 28 |
+
state_dict = model.state_dict()
|
| 29 |
+
new_state_dict = {}
|
| 30 |
+
for k, v in state_dict.items(): # The shape required by the model
|
| 31 |
+
try:
|
| 32 |
+
new_state_dict[k] = saved_state_dict[k]
|
| 33 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 34 |
+
print(
|
| 35 |
+
"shape-%s-mismatch|need-%s|get-%s"
|
| 36 |
+
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
| 37 |
+
) #
|
| 38 |
+
raise KeyError
|
| 39 |
+
except:
|
| 40 |
+
# logger.info(traceback.format_exc())
|
| 41 |
+
logger.info("%s is not in the checkpoint" % k) # pretrain is missing
|
| 42 |
+
new_state_dict[k] = v # Random values that come with the model
|
| 43 |
+
if hasattr(model, "module"):
|
| 44 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
| 45 |
+
else:
|
| 46 |
+
model.load_state_dict(new_state_dict, strict=False)
|
| 47 |
+
|
| 48 |
+
go(combd, "combd")
|
| 49 |
+
go(sbd, "sbd")
|
| 50 |
+
#############
|
| 51 |
+
logger.info("Loaded model weights")
|
| 52 |
+
|
| 53 |
+
iteration = checkpoint_dict["iteration"]
|
| 54 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
| 55 |
+
if (
|
| 56 |
+
optimizer is not None and load_opt == 1
|
| 57 |
+
): ###Unable to load. If it is empty, reinitialize it. It may also affect the update of the lr schedule. Therefore, catch it at the outermost edge of the train file.
|
| 58 |
+
# try:
|
| 59 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
| 60 |
+
# except:
|
| 61 |
+
# traceback.print_exc()
|
| 62 |
+
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
| 63 |
+
return model, optimizer, learning_rate, iteration
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
| 67 |
+
# assert os.path.isfile(checkpoint_path)
|
| 68 |
+
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
| 69 |
+
# iteration = checkpoint_dict['iteration']
|
| 70 |
+
# learning_rate = checkpoint_dict['learning_rate']
|
| 71 |
+
# if optimizer is not None:
|
| 72 |
+
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
| 73 |
+
# # print(1111)
|
| 74 |
+
# saved_state_dict = checkpoint_dict['model']
|
| 75 |
+
# # print(1111)
|
| 76 |
+
#
|
| 77 |
+
# if hasattr(model, 'module'):
|
| 78 |
+
# state_dict = model.module.state_dict()
|
| 79 |
+
# else:
|
| 80 |
+
# state_dict = model.state_dict()
|
| 81 |
+
# new_state_dict= {}
|
| 82 |
+
# for k, v in state_dict.items():
|
| 83 |
+
# try:
|
| 84 |
+
# new_state_dict[k] = saved_state_dict[k]
|
| 85 |
+
# except:
|
| 86 |
+
# logger.info("%s is not in the checkpoint" % k)
|
| 87 |
+
# new_state_dict[k] = v
|
| 88 |
+
# if hasattr(model, 'module'):
|
| 89 |
+
# model.module.load_state_dict(new_state_dict)
|
| 90 |
+
# else:
|
| 91 |
+
# model.load_state_dict(new_state_dict)
|
| 92 |
+
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
| 93 |
+
# checkpoint_path, iteration))
|
| 94 |
+
# return model, optimizer, learning_rate, iteration
|
| 95 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
| 96 |
+
assert os.path.isfile(checkpoint_path)
|
| 97 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 98 |
+
|
| 99 |
+
saved_state_dict = checkpoint_dict["model"]
|
| 100 |
+
if hasattr(model, "module"):
|
| 101 |
+
state_dict = model.module.state_dict()
|
| 102 |
+
else:
|
| 103 |
+
state_dict = model.state_dict()
|
| 104 |
+
new_state_dict = {}
|
| 105 |
+
for k, v in state_dict.items(): # The shape required by the model
|
| 106 |
+
try:
|
| 107 |
+
new_state_dict[k] = saved_state_dict[k]
|
| 108 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 109 |
+
print(
|
| 110 |
+
"shape-%s-mismatch|need-%s|get-%s"
|
| 111 |
+
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
| 112 |
+
) #
|
| 113 |
+
raise KeyError
|
| 114 |
+
except:
|
| 115 |
+
# logger.info(traceback.format_exc())
|
| 116 |
+
logger.info("%s is not in the checkpoint" % k) # pretrain is missing
|
| 117 |
+
new_state_dict[k] = v # Random values that come with the model
|
| 118 |
+
if hasattr(model, "module"):
|
| 119 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
| 120 |
+
else:
|
| 121 |
+
model.load_state_dict(new_state_dict, strict=False)
|
| 122 |
+
logger.info("Loaded model weights")
|
| 123 |
+
|
| 124 |
+
iteration = checkpoint_dict["iteration"]
|
| 125 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
| 126 |
+
if (
|
| 127 |
+
optimizer is not None and load_opt == 1
|
| 128 |
+
): ###Cannot load, if it is empty, reinitialize, it may also affect the update of lr schedule, so catch at the outermost edge of train file
|
| 129 |
+
# try:
|
| 130 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
| 131 |
+
# except:
|
| 132 |
+
# traceback.print_exc()
|
| 133 |
+
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
| 134 |
+
return model, optimizer, learning_rate, iteration
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
| 138 |
+
logger.info(
|
| 139 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
| 140 |
+
iteration, checkpoint_path
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
if hasattr(model, "module"):
|
| 144 |
+
state_dict = model.module.state_dict()
|
| 145 |
+
else:
|
| 146 |
+
state_dict = model.state_dict()
|
| 147 |
+
torch.save(
|
| 148 |
+
{
|
| 149 |
+
"model": state_dict,
|
| 150 |
+
"iteration": iteration,
|
| 151 |
+
"optimizer": optimizer.state_dict(),
|
| 152 |
+
"learning_rate": learning_rate,
|
| 153 |
+
},
|
| 154 |
+
checkpoint_path,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
| 159 |
+
logger.info(
|
| 160 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
| 161 |
+
iteration, checkpoint_path
|
| 162 |
+
)
|
| 163 |
+
)
|
| 164 |
+
if hasattr(combd, "module"):
|
| 165 |
+
state_dict_combd = combd.module.state_dict()
|
| 166 |
+
else:
|
| 167 |
+
state_dict_combd = combd.state_dict()
|
| 168 |
+
if hasattr(sbd, "module"):
|
| 169 |
+
state_dict_sbd = sbd.module.state_dict()
|
| 170 |
+
else:
|
| 171 |
+
state_dict_sbd = sbd.state_dict()
|
| 172 |
+
torch.save(
|
| 173 |
+
{
|
| 174 |
+
"combd": state_dict_combd,
|
| 175 |
+
"sbd": state_dict_sbd,
|
| 176 |
+
"iteration": iteration,
|
| 177 |
+
"optimizer": optimizer.state_dict(),
|
| 178 |
+
"learning_rate": learning_rate,
|
| 179 |
+
},
|
| 180 |
+
checkpoint_path,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def summarize(
|
| 185 |
+
writer,
|
| 186 |
+
global_step,
|
| 187 |
+
scalars={},
|
| 188 |
+
histograms={},
|
| 189 |
+
images={},
|
| 190 |
+
audios={},
|
| 191 |
+
audio_sampling_rate=22050,
|
| 192 |
+
):
|
| 193 |
+
for k, v in scalars.items():
|
| 194 |
+
writer.add_scalar(k, v, global_step)
|
| 195 |
+
for k, v in histograms.items():
|
| 196 |
+
writer.add_histogram(k, v, global_step)
|
| 197 |
+
for k, v in images.items():
|
| 198 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
| 199 |
+
for k, v in audios.items():
|
| 200 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
| 204 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 205 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
| 206 |
+
x = f_list[-1]
|
| 207 |
+
print(x)
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
| 212 |
+
global MATPLOTLIB_FLAG
|
| 213 |
+
if not MATPLOTLIB_FLAG:
|
| 214 |
+
import matplotlib
|
| 215 |
+
|
| 216 |
+
matplotlib.use("Agg")
|
| 217 |
+
MATPLOTLIB_FLAG = True
|
| 218 |
+
mpl_logger = logging.getLogger("matplotlib")
|
| 219 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 220 |
+
import matplotlib.pylab as plt
|
| 221 |
+
import numpy as np
|
| 222 |
+
|
| 223 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 224 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
| 225 |
+
plt.colorbar(im, ax=ax)
|
| 226 |
+
plt.xlabel("Frames")
|
| 227 |
+
plt.ylabel("Channels")
|
| 228 |
+
plt.tight_layout()
|
| 229 |
+
|
| 230 |
+
fig.canvas.draw()
|
| 231 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 232 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 233 |
+
plt.close()
|
| 234 |
+
return data
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
| 238 |
+
global MATPLOTLIB_FLAG
|
| 239 |
+
if not MATPLOTLIB_FLAG:
|
| 240 |
+
import matplotlib
|
| 241 |
+
|
| 242 |
+
matplotlib.use("Agg")
|
| 243 |
+
MATPLOTLIB_FLAG = True
|
| 244 |
+
mpl_logger = logging.getLogger("matplotlib")
|
| 245 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 246 |
+
import matplotlib.pylab as plt
|
| 247 |
+
import numpy as np
|
| 248 |
+
|
| 249 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 250 |
+
im = ax.imshow(
|
| 251 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
| 252 |
+
)
|
| 253 |
+
fig.colorbar(im, ax=ax)
|
| 254 |
+
xlabel = "Decoder timestep"
|
| 255 |
+
if info is not None:
|
| 256 |
+
xlabel += "\n\n" + info
|
| 257 |
+
plt.xlabel(xlabel)
|
| 258 |
+
plt.ylabel("Encoder timestep")
|
| 259 |
+
plt.tight_layout()
|
| 260 |
+
|
| 261 |
+
fig.canvas.draw()
|
| 262 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 263 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 264 |
+
plt.close()
|
| 265 |
+
return data
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def load_wav_to_torch(full_path):
|
| 269 |
+
sampling_rate, data = read(full_path)
|
| 270 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def load_filepaths_and_text(filename, split="|"):
|
| 274 |
+
with open(filename, encoding="utf-8") as f:
|
| 275 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
| 276 |
+
return filepaths_and_text
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def get_hparams(init=True):
|
| 280 |
+
"""
|
| 281 |
+
todo:
|
| 282 |
+
Ending group of seven:
|
| 283 |
+
Save frequency, total epoch done
|
| 284 |
+
bs done
|
| 285 |
+
pretrainG, pretrainD done
|
| 286 |
+
Card number: os.en["CUDA_VISIBLE_DEVICES"] done
|
| 287 |
+
if_latest done
|
| 288 |
+
Model: if_f0 done
|
| 289 |
+
Sampling rate: Automatically select config done
|
| 290 |
+
Whether to cache the data set into the GPU: if_cache_data_in_gpu done
|
| 291 |
+
|
| 292 |
+
-m:
|
| 293 |
+
Automatically determine the training_files path, change the hps.data.training_files in train_nsf_load_pretrain.py done
|
| 294 |
+
-c no longer needed
|
| 295 |
+
"""
|
| 296 |
+
parser = argparse.ArgumentParser()
|
| 297 |
+
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
|
| 298 |
+
parser.add_argument(
|
| 299 |
+
"-se",
|
| 300 |
+
"--save_every_epoch",
|
| 301 |
+
type=int,
|
| 302 |
+
required=True,
|
| 303 |
+
help="checkpoint save frequency (epoch)",
|
| 304 |
+
)
|
| 305 |
+
parser.add_argument(
|
| 306 |
+
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
| 307 |
+
)
|
| 308 |
+
parser.add_argument(
|
| 309 |
+
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path"
|
| 310 |
+
)
|
| 311 |
+
parser.add_argument(
|
| 312 |
+
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path"
|
| 313 |
+
)
|
| 314 |
+
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
| 315 |
+
parser.add_argument(
|
| 316 |
+
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
| 317 |
+
)
|
| 318 |
+
parser.add_argument(
|
| 319 |
+
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
| 320 |
+
) # -m
|
| 321 |
+
parser.add_argument(
|
| 322 |
+
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
| 323 |
+
)
|
| 324 |
+
parser.add_argument(
|
| 325 |
+
"-sw",
|
| 326 |
+
"--save_every_weights",
|
| 327 |
+
type=str,
|
| 328 |
+
default="0",
|
| 329 |
+
help="save the extracted model in weights directory when saving checkpoints",
|
| 330 |
+
)
|
| 331 |
+
parser.add_argument(
|
| 332 |
+
"-v", "--version", type=str, required=True, help="model version"
|
| 333 |
+
)
|
| 334 |
+
parser.add_argument(
|
| 335 |
+
"-f0",
|
| 336 |
+
"--if_f0",
|
| 337 |
+
type=int,
|
| 338 |
+
required=True,
|
| 339 |
+
help="use f0 as one of the inputs of the model, 1 or 0",
|
| 340 |
+
)
|
| 341 |
+
parser.add_argument(
|
| 342 |
+
"-l",
|
| 343 |
+
"--if_latest",
|
| 344 |
+
type=int,
|
| 345 |
+
required=True,
|
| 346 |
+
help="if only save the latest G/D pth file, 1 or 0",
|
| 347 |
+
)
|
| 348 |
+
parser.add_argument(
|
| 349 |
+
"-c",
|
| 350 |
+
"--if_cache_data_in_gpu",
|
| 351 |
+
type=int,
|
| 352 |
+
required=True,
|
| 353 |
+
help="if caching the dataset in GPU memory, 1 or 0",
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
args = parser.parse_args()
|
| 357 |
+
name = args.experiment_dir
|
| 358 |
+
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
| 359 |
+
|
| 360 |
+
if not os.path.exists(experiment_dir):
|
| 361 |
+
os.makedirs(experiment_dir)
|
| 362 |
+
|
| 363 |
+
if args.version == "v1" or args.sample_rate == "40k":
|
| 364 |
+
config_path = "configs/%s.json" % args.sample_rate
|
| 365 |
+
else:
|
| 366 |
+
config_path = "configs/%s_v2.json" % args.sample_rate
|
| 367 |
+
config_save_path = os.path.join(experiment_dir, "config.json")
|
| 368 |
+
if init:
|
| 369 |
+
with open(config_path, "r") as f:
|
| 370 |
+
data = f.read()
|
| 371 |
+
with open(config_save_path, "w") as f:
|
| 372 |
+
f.write(data)
|
| 373 |
+
else:
|
| 374 |
+
with open(config_save_path, "r") as f:
|
| 375 |
+
data = f.read()
|
| 376 |
+
config = json.loads(data)
|
| 377 |
+
|
| 378 |
+
hparams = HParams(**config)
|
| 379 |
+
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
| 380 |
+
hparams.save_every_epoch = args.save_every_epoch
|
| 381 |
+
hparams.name = name
|
| 382 |
+
hparams.total_epoch = args.total_epoch
|
| 383 |
+
hparams.pretrainG = args.pretrainG
|
| 384 |
+
hparams.pretrainD = args.pretrainD
|
| 385 |
+
hparams.version = args.version
|
| 386 |
+
hparams.gpus = args.gpus
|
| 387 |
+
hparams.train.batch_size = args.batch_size
|
| 388 |
+
hparams.sample_rate = args.sample_rate
|
| 389 |
+
hparams.if_f0 = args.if_f0
|
| 390 |
+
hparams.if_latest = args.if_latest
|
| 391 |
+
hparams.save_every_weights = args.save_every_weights
|
| 392 |
+
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
| 393 |
+
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
| 394 |
+
return hparams
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def get_hparams_from_dir(model_dir):
|
| 398 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 399 |
+
with open(config_save_path, "r") as f:
|
| 400 |
+
data = f.read()
|
| 401 |
+
config = json.loads(data)
|
| 402 |
+
|
| 403 |
+
hparams = HParams(**config)
|
| 404 |
+
hparams.model_dir = model_dir
|
| 405 |
+
return hparams
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def get_hparams_from_file(config_path):
|
| 409 |
+
with open(config_path, "r") as f:
|
| 410 |
+
data = f.read()
|
| 411 |
+
config = json.loads(data)
|
| 412 |
+
|
| 413 |
+
hparams = HParams(**config)
|
| 414 |
+
return hparams
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def check_git_hash(model_dir):
|
| 418 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 419 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 420 |
+
logger.warn(
|
| 421 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 422 |
+
source_dir
|
| 423 |
+
)
|
| 424 |
+
)
|
| 425 |
+
return
|
| 426 |
+
|
| 427 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
| 428 |
+
|
| 429 |
+
path = os.path.join(model_dir, "githash")
|
| 430 |
+
if os.path.exists(path):
|
| 431 |
+
saved_hash = open(path).read()
|
| 432 |
+
if saved_hash != cur_hash:
|
| 433 |
+
logger.warn(
|
| 434 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
| 435 |
+
saved_hash[:8], cur_hash[:8]
|
| 436 |
+
)
|
| 437 |
+
)
|
| 438 |
+
else:
|
| 439 |
+
open(path, "w").write(cur_hash)
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def get_logger(model_dir, filename="train.log"):
|
| 443 |
+
global logger
|
| 444 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
| 445 |
+
logger.setLevel(logging.DEBUG)
|
| 446 |
+
|
| 447 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
| 448 |
+
if not os.path.exists(model_dir):
|
| 449 |
+
os.makedirs(model_dir)
|
| 450 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
| 451 |
+
h.setLevel(logging.DEBUG)
|
| 452 |
+
h.setFormatter(formatter)
|
| 453 |
+
logger.addHandler(h)
|
| 454 |
+
return logger
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
class HParams:
|
| 458 |
+
def __init__(self, **kwargs):
|
| 459 |
+
for k, v in kwargs.items():
|
| 460 |
+
if type(v) == dict:
|
| 461 |
+
v = HParams(**v)
|
| 462 |
+
self[k] = v
|
| 463 |
+
|
| 464 |
+
def keys(self):
|
| 465 |
+
return self.__dict__.keys()
|
| 466 |
+
|
| 467 |
+
def items(self):
|
| 468 |
+
return self.__dict__.items()
|
| 469 |
+
|
| 470 |
+
def values(self):
|
| 471 |
+
return self.__dict__.values()
|
| 472 |
+
|
| 473 |
+
def __len__(self):
|
| 474 |
+
return len(self.__dict__)
|
| 475 |
+
|
| 476 |
+
def __getitem__(self, key):
|
| 477 |
+
return getattr(self, key)
|
| 478 |
+
|
| 479 |
+
def __setitem__(self, key, value):
|
| 480 |
+
return setattr(self, key, value)
|
| 481 |
+
|
| 482 |
+
def __contains__(self, key):
|
| 483 |
+
return key in self.__dict__
|
| 484 |
+
|
| 485 |
+
def __repr__(self):
|
| 486 |
+
return self.__dict__.__repr__()
|