|  | """ | 
					
						
						|  | v1 | 
					
						
						|  | runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "E:\codes\py39\RVC-beta\output" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33 | 
					
						
						|  | v2 | 
					
						
						|  | runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "E:\codes\py39\RVC-beta\output_v2" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33 | 
					
						
						|  | """ | 
					
						
						|  | import os, sys, pdb, torch | 
					
						
						|  |  | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | import argparse | 
					
						
						|  | import glob | 
					
						
						|  | import sys | 
					
						
						|  | import torch | 
					
						
						|  | import tqdm as tq | 
					
						
						|  | from multiprocessing import cpu_count | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Config: | 
					
						
						|  | def __init__(self, device, is_half): | 
					
						
						|  | self.device = device | 
					
						
						|  | self.is_half = is_half | 
					
						
						|  | self.n_cpu = 0 | 
					
						
						|  | self.gpu_name = None | 
					
						
						|  | self.gpu_mem = None | 
					
						
						|  | self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | 
					
						
						|  |  | 
					
						
						|  | def device_config(self) -> tuple: | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | i_device = int(self.device.split(":")[-1]) | 
					
						
						|  | self.gpu_name = torch.cuda.get_device_name(i_device) | 
					
						
						|  | if ( | 
					
						
						|  | ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | 
					
						
						|  | or "P40" in self.gpu_name.upper() | 
					
						
						|  | or "1060" in self.gpu_name | 
					
						
						|  | or "1070" in self.gpu_name | 
					
						
						|  | or "1080" in self.gpu_name | 
					
						
						|  | ): | 
					
						
						|  | print("16系/10系显卡和P40强制单精度") | 
					
						
						|  | self.is_half = False | 
					
						
						|  | for config_file in ["32k.json", "40k.json", "48k.json"]: | 
					
						
						|  | with open(f"configs/{config_file}", "r") as f: | 
					
						
						|  | strr = f.read().replace("true", "false") | 
					
						
						|  | with open(f"configs/{config_file}", "w") as f: | 
					
						
						|  | f.write(strr) | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "r") as f: | 
					
						
						|  | strr = f.read().replace("3.7", "3.0") | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "w") as f: | 
					
						
						|  | f.write(strr) | 
					
						
						|  | else: | 
					
						
						|  | self.gpu_name = None | 
					
						
						|  | self.gpu_mem = int( | 
					
						
						|  | torch.cuda.get_device_properties(i_device).total_memory | 
					
						
						|  | / 1024 | 
					
						
						|  | / 1024 | 
					
						
						|  | / 1024 | 
					
						
						|  | + 0.4 | 
					
						
						|  | ) | 
					
						
						|  | if self.gpu_mem <= 4: | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "r") as f: | 
					
						
						|  | strr = f.read().replace("3.7", "3.0") | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "w") as f: | 
					
						
						|  | f.write(strr) | 
					
						
						|  | elif torch.backends.mps.is_available(): | 
					
						
						|  | print("没有发现支持的N卡, 使用MPS进行推理") | 
					
						
						|  | self.device = "mps" | 
					
						
						|  | else: | 
					
						
						|  | print("没有发现支持的N卡, 使用CPU进行推理") | 
					
						
						|  | self.device = "cpu" | 
					
						
						|  | self.is_half = True | 
					
						
						|  |  | 
					
						
						|  | if self.n_cpu == 0: | 
					
						
						|  | self.n_cpu = cpu_count() | 
					
						
						|  |  | 
					
						
						|  | if self.is_half: | 
					
						
						|  |  | 
					
						
						|  | x_pad = 3 | 
					
						
						|  | x_query = 10 | 
					
						
						|  | x_center = 60 | 
					
						
						|  | x_max = 65 | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | x_pad = 1 | 
					
						
						|  | x_query = 6 | 
					
						
						|  | x_center = 38 | 
					
						
						|  | x_max = 41 | 
					
						
						|  |  | 
					
						
						|  | if self.gpu_mem != None and self.gpu_mem <= 4: | 
					
						
						|  | x_pad = 1 | 
					
						
						|  | x_query = 5 | 
					
						
						|  | x_center = 30 | 
					
						
						|  | x_max = 32 | 
					
						
						|  |  | 
					
						
						|  | return x_pad, x_query, x_center, x_max | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | f0up_key = sys.argv[1] | 
					
						
						|  | input_path = sys.argv[2] | 
					
						
						|  | index_path = sys.argv[3] | 
					
						
						|  | f0method = sys.argv[4] | 
					
						
						|  | opt_path = sys.argv[5] | 
					
						
						|  | model_path = sys.argv[6] | 
					
						
						|  | index_rate = float(sys.argv[7]) | 
					
						
						|  | device = sys.argv[8] | 
					
						
						|  | is_half = bool(sys.argv[9]) | 
					
						
						|  | filter_radius = int(sys.argv[10]) | 
					
						
						|  | resample_sr = int(sys.argv[11]) | 
					
						
						|  | rms_mix_rate = float(sys.argv[12]) | 
					
						
						|  | protect = float(sys.argv[13]) | 
					
						
						|  | print(sys.argv) | 
					
						
						|  | config = Config(device, is_half) | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | from vc_infer_pipeline import VC | 
					
						
						|  | from infer_pack.models import ( | 
					
						
						|  | SynthesizerTrnMs256NSFsid, | 
					
						
						|  | SynthesizerTrnMs256NSFsid_nono, | 
					
						
						|  | SynthesizerTrnMs768NSFsid, | 
					
						
						|  | SynthesizerTrnMs768NSFsid_nono, | 
					
						
						|  | ) | 
					
						
						|  | from my_utils import load_audio | 
					
						
						|  | from fairseq import checkpoint_utils | 
					
						
						|  | from scipy.io import wavfile | 
					
						
						|  |  | 
					
						
						|  | hubert_model = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_hubert(): | 
					
						
						|  | global hubert_model | 
					
						
						|  | models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | 
					
						
						|  | ["hubert_base.pt"], | 
					
						
						|  | suffix="", | 
					
						
						|  | ) | 
					
						
						|  | hubert_model = models[0] | 
					
						
						|  | hubert_model = hubert_model.to(device) | 
					
						
						|  | if is_half: | 
					
						
						|  | hubert_model = hubert_model.half() | 
					
						
						|  | else: | 
					
						
						|  | hubert_model = hubert_model.float() | 
					
						
						|  | hubert_model.eval() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vc_single(sid, input_audio, f0_up_key, f0_file, f0_method, file_index, index_rate): | 
					
						
						|  | global tgt_sr, net_g, vc, hubert_model, version | 
					
						
						|  | if input_audio is None: | 
					
						
						|  | return "You need to upload an audio", None | 
					
						
						|  | f0_up_key = int(f0_up_key) | 
					
						
						|  | audio = load_audio(input_audio, 16000) | 
					
						
						|  | times = [0, 0, 0] | 
					
						
						|  | if hubert_model == None: | 
					
						
						|  | load_hubert() | 
					
						
						|  | if_f0 = cpt.get("f0", 1) | 
					
						
						|  |  | 
					
						
						|  | audio_opt = vc.pipeline( | 
					
						
						|  | hubert_model, | 
					
						
						|  | net_g, | 
					
						
						|  | sid, | 
					
						
						|  | audio, | 
					
						
						|  | input_audio, | 
					
						
						|  | times, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_method, | 
					
						
						|  | file_index, | 
					
						
						|  | index_rate, | 
					
						
						|  | if_f0, | 
					
						
						|  | filter_radius, | 
					
						
						|  | tgt_sr, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | version, | 
					
						
						|  | protect, | 
					
						
						|  | f0_file=f0_file, | 
					
						
						|  | ) | 
					
						
						|  | print(times) | 
					
						
						|  | return audio_opt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_vc(model_path): | 
					
						
						|  | global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version | 
					
						
						|  | print("loading pth %s" % model_path) | 
					
						
						|  | cpt = torch.load(model_path, map_location="cpu") | 
					
						
						|  | tgt_sr = cpt["config"][-1] | 
					
						
						|  | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | 
					
						
						|  | if_f0 = cpt.get("f0", 1) | 
					
						
						|  | version = cpt.get("version", "v1") | 
					
						
						|  | if version == "v1": | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | 
					
						
						|  | elif version == "v2": | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | 
					
						
						|  | del net_g.enc_q | 
					
						
						|  | print(net_g.load_state_dict(cpt["weight"], strict=False)) | 
					
						
						|  | net_g.eval().to(device) | 
					
						
						|  | if is_half: | 
					
						
						|  | net_g = net_g.half() | 
					
						
						|  | else: | 
					
						
						|  | net_g = net_g.float() | 
					
						
						|  | vc = VC(tgt_sr, config) | 
					
						
						|  | n_spk = cpt["config"][-3] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | get_vc(model_path) | 
					
						
						|  | audios = os.listdir(input_path) | 
					
						
						|  | for file in tq.tqdm(audios): | 
					
						
						|  | if file.endswith(".wav"): | 
					
						
						|  | file_path = input_path + "/" + file | 
					
						
						|  | wav_opt = vc_single( | 
					
						
						|  | 0, file_path, f0up_key, None, f0method, index_path, index_rate | 
					
						
						|  | ) | 
					
						
						|  | out_path = opt_path + "/" + file | 
					
						
						|  | wavfile.write(out_path, tgt_sr, wav_opt) | 
					
						
						|  |  |